{"title":"测试随机效用模型的方法","authors":"Antonio Forcina , Valentino Dardanoni","doi":"10.1016/j.spl.2024.110230","DOIUrl":null,"url":null,"abstract":"<div><p>The Random Utility Model, central in stochastic choice theory, is equivalent to assume that a probability vector belongs to a convex cone. We investigate its underlying geometry, introduce two new testing procedures, and compare them by simulation.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods for testing the random utility model\",\"authors\":\"Antonio Forcina , Valentino Dardanoni\",\"doi\":\"10.1016/j.spl.2024.110230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Random Utility Model, central in stochastic choice theory, is equivalent to assume that a probability vector belongs to a convex cone. We investigate its underlying geometry, introduce two new testing procedures, and compare them by simulation.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Random Utility Model, central in stochastic choice theory, is equivalent to assume that a probability vector belongs to a convex cone. We investigate its underlying geometry, introduce two new testing procedures, and compare them by simulation.