{"title":"从完整图中构造旗变换、点原初 2 设计","authors":"Chuyi Zhong, Shenglin Zhou","doi":"10.1016/j.disc.2024.114217","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study 2-designs <span><math><mi>D</mi><mo>=</mo><mo>(</mo><mi>P</mi><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>P</mi></math></span> can be viewed as the edge set of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <em>B</em> can be identified as the edge set of a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We give a necessary condition for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. As an application, all pairs <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are determined, where <span><math><mi>D</mi></math></span> is a 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>3</mn></math></span> or 4, and <em>G</em> is flag-transitive with <span><math><mi>S</mi><mi>o</mi><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and alternating socle <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>v</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114217"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003480/pdfft?md5=8dd45f6c8de1e9aaa5ee26ce47fc990b&pid=1-s2.0-S0012365X24003480-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Constructing flag-transitive, point-primitive 2-designs from complete graphs\",\"authors\":\"Chuyi Zhong, Shenglin Zhou\",\"doi\":\"10.1016/j.disc.2024.114217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study 2-designs <span><math><mi>D</mi><mo>=</mo><mo>(</mo><mi>P</mi><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>P</mi></math></span> can be viewed as the edge set of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <em>B</em> can be identified as the edge set of a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We give a necessary condition for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. As an application, all pairs <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are determined, where <span><math><mi>D</mi></math></span> is a 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>3</mn></math></span> or 4, and <em>G</em> is flag-transitive with <span><math><mi>S</mi><mi>o</mi><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs with <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and alternating socle <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>v</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114217\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003480/pdfft?md5=8dd45f6c8de1e9aaa5ee26ce47fc990b&pid=1-s2.0-S0012365X24003480-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003480\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003480","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将研究 2-设计 D=(P,BSn),其中 P 可视为完整图 Kn 的边集,B 可视为 Kn 子图的边集。我们给出了 Sn 是旗透性的必要条件,然后介绍了构建这种 2 设计的三种方法,它们都承认旗透性的点原初自变群 Sn。作为应用,我们确定了所有成对 (D,G),其中 D 是 gcd(v-1,k-1)=3 或 4 的 2-(v,k,λ)设计,而 G 是 n≥5 时 Soc(G)=An 的旗透性设计。此外,我们还证明了存在无穷的旗递、点原始 2-(v,k,λ)设计,其 gcd(v-1,k-1)≤(v-1)1/2 和交替的 socle An,且 v=(n2) 。
Constructing flag-transitive, point-primitive 2-designs from complete graphs
In this paper, we study 2-designs , where can be viewed as the edge set of the complete graph , and B can be identified as the edge set of a subgraph of . We give a necessary condition for to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group . As an application, all pairs are determined, where is a 2- design with or 4, and G is flag-transitive with for . Furthermore, we show that there are infinite flag-transitive, point-primitive 2- designs with and alternating socle with .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.