从完整图中构造旗变换、点原初 2 设计

IF 0.7 3区 数学 Q2 MATHEMATICS
Chuyi Zhong, Shenglin Zhou
{"title":"从完整图中构造旗变换、点原初 2 设计","authors":"Chuyi Zhong,&nbsp;Shenglin Zhou","doi":"10.1016/j.disc.2024.114217","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study 2-designs <span><math><mi>D</mi><mo>=</mo><mo>(</mo><mi>P</mi><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>P</mi></math></span> can be viewed as the edge set of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <em>B</em> can be identified as the edge set of a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We give a necessary condition for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. As an application, all pairs <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are determined, where <span><math><mi>D</mi></math></span> is a 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>3</mn></math></span> or 4, and <em>G</em> is flag-transitive with <span><math><mi>S</mi><mi>o</mi><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and alternating socle <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>v</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114217"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003480/pdfft?md5=8dd45f6c8de1e9aaa5ee26ce47fc990b&pid=1-s2.0-S0012365X24003480-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Constructing flag-transitive, point-primitive 2-designs from complete graphs\",\"authors\":\"Chuyi Zhong,&nbsp;Shenglin Zhou\",\"doi\":\"10.1016/j.disc.2024.114217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study 2-designs <span><math><mi>D</mi><mo>=</mo><mo>(</mo><mi>P</mi><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>P</mi></math></span> can be viewed as the edge set of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <em>B</em> can be identified as the edge set of a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We give a necessary condition for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. As an application, all pairs <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are determined, where <span><math><mi>D</mi></math></span> is a 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>3</mn></math></span> or 4, and <em>G</em> is flag-transitive with <span><math><mi>S</mi><mi>o</mi><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and alternating socle <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>v</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114217\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003480/pdfft?md5=8dd45f6c8de1e9aaa5ee26ce47fc990b&pid=1-s2.0-S0012365X24003480-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003480\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003480","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究 2-设计 D=(P,BSn),其中 P 可视为完整图 Kn 的边集,B 可视为 Kn 子图的边集。我们给出了 Sn 是旗透性的必要条件,然后介绍了构建这种 2 设计的三种方法,它们都承认旗透性的点原初自变群 Sn。作为应用,我们确定了所有成对 (D,G),其中 D 是 gcd(v-1,k-1)=3 或 4 的 2-(v,k,λ)设计,而 G 是 n≥5 时 Soc(G)=An 的旗透性设计。此外,我们还证明了存在无穷的旗递、点原始 2-(v,k,λ)设计,其 gcd(v-1,k-1)≤(v-1)1/2 和交替的 socle An,且 v=(n2) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing flag-transitive, point-primitive 2-designs from complete graphs

In this paper, we study 2-designs D=(P,BSn), where P can be viewed as the edge set of the complete graph Kn, and B can be identified as the edge set of a subgraph of Kn. We give a necessary condition for Sn to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group Sn. As an application, all pairs (D,G) are determined, where D is a 2-(v,k,λ) design with gcd(v1,k1)=3 or 4, and G is flag-transitive with Soc(G)=An for n5. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-(v,k,λ) designs with gcd(v1,k1)(v1)1/2 and alternating socle An with v=(n2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信