Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng
{"title":"制备基于污泥的低成本高多孔生物炭,用于高效去除农用化学品和制药废水中的难降解污染物。","authors":"Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng","doi":"10.1016/j.jhazmat.2024.135572","DOIUrl":null,"url":null,"abstract":"<p><p>Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm<sup>3</sup>/g and a surface area of 691.4 m<sup>2</sup>/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135572"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater.\",\"authors\":\"Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng\",\"doi\":\"10.1016/j.jhazmat.2024.135572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm<sup>3</sup>/g and a surface area of 691.4 m<sup>2</sup>/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater.
Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm3/g and a surface area of 691.4 m2/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.