{"title":"作为轻度认知障碍生物标志物的异常中央后回体素-镜像同位连接:静息态 fMRI 和支持向量机分析。","authors":"","doi":"10.1016/j.exger.2024.112547","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>While patients affected by mild cognitive impairment (MCI) exhibit characteristic voxel-mirrored homotopic connectivity (VMHC) alterations, the ability of such VMHC abnormalities to predict the diagnosis of MCI in these patients remains uncertain. As such, this study was performed to evaluate the potential role of VMHC abnormalities in the diagnosis of MCI.</p></div><div><h3>Methods</h3><p>MCI patients and healthy controls (HCs) were enrolled and subjected to resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing. VMHC and support vector machine (SVM) techniques were then used to examine the collected imaging data.</p></div><div><h3>Results</h3><p>Totally, 53 MCI patients and 68 healthy controls were recruited. Compared to HCs, MCI patients presented with an increase in postcentral gyrus VMHC. SVM classification demonstrated the ability of postcentral gyrus VMHC values to classify HCs and MCI patients with accuracy, sensitivity, and specificity values of 63.64 %, 71.69 %, and 89.71 %, respectively.</p></div><div><h3>Conclusion</h3><p>VMHC abnormalities in the postcentral gyrus may be mechanistically involved in the pathophysiological progression of MCI patients, and these abnormal VMHC patterns may also offer utility as a neuroimaging biomarker for MCI patient diagnosis.</p></div>","PeriodicalId":94003,"journal":{"name":"Experimental gerontology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0531556524001931/pdfft?md5=704d55ad23f8ef48088378c84fc22442&pid=1-s2.0-S0531556524001931-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Abnormal postcentral gyrus voxel-mirrored homotopic connectivity as a biomarker of mild cognitive impairment: A resting-state fMRI and support vector machine analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.exger.2024.112547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>While patients affected by mild cognitive impairment (MCI) exhibit characteristic voxel-mirrored homotopic connectivity (VMHC) alterations, the ability of such VMHC abnormalities to predict the diagnosis of MCI in these patients remains uncertain. As such, this study was performed to evaluate the potential role of VMHC abnormalities in the diagnosis of MCI.</p></div><div><h3>Methods</h3><p>MCI patients and healthy controls (HCs) were enrolled and subjected to resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing. VMHC and support vector machine (SVM) techniques were then used to examine the collected imaging data.</p></div><div><h3>Results</h3><p>Totally, 53 MCI patients and 68 healthy controls were recruited. Compared to HCs, MCI patients presented with an increase in postcentral gyrus VMHC. SVM classification demonstrated the ability of postcentral gyrus VMHC values to classify HCs and MCI patients with accuracy, sensitivity, and specificity values of 63.64 %, 71.69 %, and 89.71 %, respectively.</p></div><div><h3>Conclusion</h3><p>VMHC abnormalities in the postcentral gyrus may be mechanistically involved in the pathophysiological progression of MCI patients, and these abnormal VMHC patterns may also offer utility as a neuroimaging biomarker for MCI patient diagnosis.</p></div>\",\"PeriodicalId\":94003,\"journal\":{\"name\":\"Experimental gerontology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0531556524001931/pdfft?md5=704d55ad23f8ef48088378c84fc22442&pid=1-s2.0-S0531556524001931-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental gerontology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0531556524001931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental gerontology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531556524001931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abnormal postcentral gyrus voxel-mirrored homotopic connectivity as a biomarker of mild cognitive impairment: A resting-state fMRI and support vector machine analysis
Background
While patients affected by mild cognitive impairment (MCI) exhibit characteristic voxel-mirrored homotopic connectivity (VMHC) alterations, the ability of such VMHC abnormalities to predict the diagnosis of MCI in these patients remains uncertain. As such, this study was performed to evaluate the potential role of VMHC abnormalities in the diagnosis of MCI.
Methods
MCI patients and healthy controls (HCs) were enrolled and subjected to resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing. VMHC and support vector machine (SVM) techniques were then used to examine the collected imaging data.
Results
Totally, 53 MCI patients and 68 healthy controls were recruited. Compared to HCs, MCI patients presented with an increase in postcentral gyrus VMHC. SVM classification demonstrated the ability of postcentral gyrus VMHC values to classify HCs and MCI patients with accuracy, sensitivity, and specificity values of 63.64 %, 71.69 %, and 89.71 %, respectively.
Conclusion
VMHC abnormalities in the postcentral gyrus may be mechanistically involved in the pathophysiological progression of MCI patients, and these abnormal VMHC patterns may also offer utility as a neuroimaging biomarker for MCI patient diagnosis.