从纵向手术前 CT 扫描中识别侵袭性肺实性下结节的放射组学分析

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Apurva Singh, Leonid Roshkovan, Hannah Horng, Andrew Chen, Sharyn I Katz, Jeffrey C Thompson, Despina Kontos
{"title":"从纵向手术前 CT 扫描中识别侵袭性肺实性下结节的放射组学分析","authors":"Apurva Singh, Leonid Roshkovan, Hannah Horng, Andrew Chen, Sharyn I Katz, Jeffrey C Thompson, Despina Kontos","doi":"10.1097/RTI.0000000000000800","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Effective identification of malignant part-solid lung nodules is crucial to eliminate risks due to therapeutic intervention or lack thereof. We aimed to develop delta radiomics and volumetric signatures, characterize changes in nodule properties over three presurgical time points, and assess the accuracy of nodule invasiveness identification when combined with immediate presurgical time point radiomics signature and clinical biomarkers.</p><p><strong>Materials and methods: </strong>Cohort included 156 part-solid lung nodules with immediate presurgical CT scans and a subset of 122 nodules with scans at 3 presurgical time points. Region of interest segmentation was performed using ITK-SNAP, and feature extraction using CaPTk. Image parameter heterogeneity was mitigated at each time point using nested ComBat harmonization. For 122 nodules, delta radiomics features (ΔRAB= (RB-RA)/RA) and delta volumes (ΔVAB= (VB-VA)/VA) were computed between the time points. Principal Component Analysis was performed to construct immediate presurgical radiomics (Rs1) and delta radiomics signatures (ΔRs31+ ΔRs21+ ΔRs32). Identification of nodule pathology was performed using logistic regression on delta radiomics and immediate presurgical time point signatures, delta volumes (ΔV31+ ΔV21+ ΔV32), and clinical variable (smoking status, BMI) models (train test split (2:1)).</p><p><strong>Results: </strong>In delta radiomics analysis (n= 122 nodules), the best-performing model combined immediate pre-surgical time point and delta radiomics signatures, delta volumes, and clinical factors (classification accuracy [AUC]): (77.5% [0.73]) (train); (71.6% [0.69]) (test).</p><p><strong>Conclusions: </strong>Delta radiomics and volumes can detect changes in nodule properties over time, which are predictive of nodule invasiveness. These tools could improve conventional radiologic assessment, allow for earlier intervention for aggressive nodules, and decrease unnecessary intervention-related morbidity.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics Analysis for the Identification of Invasive Pulmonary Subsolid Nodules From Longitudinal Presurgical CT Scans.\",\"authors\":\"Apurva Singh, Leonid Roshkovan, Hannah Horng, Andrew Chen, Sharyn I Katz, Jeffrey C Thompson, Despina Kontos\",\"doi\":\"10.1097/RTI.0000000000000800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Effective identification of malignant part-solid lung nodules is crucial to eliminate risks due to therapeutic intervention or lack thereof. We aimed to develop delta radiomics and volumetric signatures, characterize changes in nodule properties over three presurgical time points, and assess the accuracy of nodule invasiveness identification when combined with immediate presurgical time point radiomics signature and clinical biomarkers.</p><p><strong>Materials and methods: </strong>Cohort included 156 part-solid lung nodules with immediate presurgical CT scans and a subset of 122 nodules with scans at 3 presurgical time points. Region of interest segmentation was performed using ITK-SNAP, and feature extraction using CaPTk. Image parameter heterogeneity was mitigated at each time point using nested ComBat harmonization. For 122 nodules, delta radiomics features (ΔRAB= (RB-RA)/RA) and delta volumes (ΔVAB= (VB-VA)/VA) were computed between the time points. Principal Component Analysis was performed to construct immediate presurgical radiomics (Rs1) and delta radiomics signatures (ΔRs31+ ΔRs21+ ΔRs32). Identification of nodule pathology was performed using logistic regression on delta radiomics and immediate presurgical time point signatures, delta volumes (ΔV31+ ΔV21+ ΔV32), and clinical variable (smoking status, BMI) models (train test split (2:1)).</p><p><strong>Results: </strong>In delta radiomics analysis (n= 122 nodules), the best-performing model combined immediate pre-surgical time point and delta radiomics signatures, delta volumes, and clinical factors (classification accuracy [AUC]): (77.5% [0.73]) (train); (71.6% [0.69]) (test).</p><p><strong>Conclusions: </strong>Delta radiomics and volumes can detect changes in nodule properties over time, which are predictive of nodule invasiveness. These tools could improve conventional radiologic assessment, allow for earlier intervention for aggressive nodules, and decrease unnecessary intervention-related morbidity.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000800\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000800","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:有效识别恶性部分实性肺结节对于消除因治疗干预或缺乏治疗干预导致的风险至关重要。我们旨在开发δ放射组学和容积特征,描述手术前三个时间点结节性质的变化,并评估结合手术前即时时间点放射组学特征和临床生物标志物识别结节侵袭性的准确性:队列包括156个部分实性肺部结节和122个在术前三个时间点扫描的结节子集。使用 ITK-SNAP 进行感兴趣区分割,并使用 CaPTk 进行特征提取。每个时间点的图像参数异质性通过嵌套 ComBat 协调来缓解。对于 122 个结节,计算了各时间点之间的 delta 放射性组学特征(ΔRAB= (RB-RA)/RA)和 delta 体积(ΔVAB= (VB-VA)/VA)。通过主成分分析,构建手术前即时放射组学特征(Rs1)和δ放射组学特征(ΔRs31+ ΔRs21+ ΔRs32)。结节病理学的鉴定是通过对δ放射组学和即时手术前时间点特征、δ体积(ΔV31+ ΔV21+ ΔV32)和临床变量(吸烟状态、体重指数)模型(train test split (2:1))的逻辑回归进行的:在Δ放射组学分析中(n= 122个结节),表现最好的模型结合了手术前即时时间点和Δ放射组学特征、Δ体积和临床因素(分类准确率[AUC]):(77.5% [0.73])(训练);(71.6% [0.69])(测试):结论:德尔塔放射组学和容积可检测结节随时间发生的性质变化,这些变化可预测结节的侵袭性。这些工具可以改善传统的放射学评估,对侵袭性结节进行早期干预,并降低不必要的干预相关发病率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics Analysis for the Identification of Invasive Pulmonary Subsolid Nodules From Longitudinal Presurgical CT Scans.

Purpose: Effective identification of malignant part-solid lung nodules is crucial to eliminate risks due to therapeutic intervention or lack thereof. We aimed to develop delta radiomics and volumetric signatures, characterize changes in nodule properties over three presurgical time points, and assess the accuracy of nodule invasiveness identification when combined with immediate presurgical time point radiomics signature and clinical biomarkers.

Materials and methods: Cohort included 156 part-solid lung nodules with immediate presurgical CT scans and a subset of 122 nodules with scans at 3 presurgical time points. Region of interest segmentation was performed using ITK-SNAP, and feature extraction using CaPTk. Image parameter heterogeneity was mitigated at each time point using nested ComBat harmonization. For 122 nodules, delta radiomics features (ΔRAB= (RB-RA)/RA) and delta volumes (ΔVAB= (VB-VA)/VA) were computed between the time points. Principal Component Analysis was performed to construct immediate presurgical radiomics (Rs1) and delta radiomics signatures (ΔRs31+ ΔRs21+ ΔRs32). Identification of nodule pathology was performed using logistic regression on delta radiomics and immediate presurgical time point signatures, delta volumes (ΔV31+ ΔV21+ ΔV32), and clinical variable (smoking status, BMI) models (train test split (2:1)).

Results: In delta radiomics analysis (n= 122 nodules), the best-performing model combined immediate pre-surgical time point and delta radiomics signatures, delta volumes, and clinical factors (classification accuracy [AUC]): (77.5% [0.73]) (train); (71.6% [0.69]) (test).

Conclusions: Delta radiomics and volumes can detect changes in nodule properties over time, which are predictive of nodule invasiveness. These tools could improve conventional radiologic assessment, allow for earlier intervention for aggressive nodules, and decrease unnecessary intervention-related morbidity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信