按揭贷款中的历史偏差、再限制以及对不确定地理背景问题的影响:达拉斯和波士顿结构性住房歧视研究》(Historical Bias in Mortgage Lending, Redlining, and Implications for the Uncertain Geographic Context Problem: A Study of Structural Housing Discrimination in Dallas and Boston.

IF 4.3 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Alaina M Beauchamp, Jasmin A Tiro, Jennifer S Haas, Sarah C Kobrin, Margarita Alegria, Amy E Hughes
{"title":"按揭贷款中的历史偏差、再限制以及对不确定地理背景问题的影响:达拉斯和波士顿结构性住房歧视研究》(Historical Bias in Mortgage Lending, Redlining, and Implications for the Uncertain Geographic Context Problem: A Study of Structural Housing Discrimination in Dallas and Boston.","authors":"Alaina M Beauchamp, Jasmin A Tiro, Jennifer S Haas, Sarah C Kobrin, Margarita Alegria, Amy E Hughes","doi":"10.1007/s11524-024-00887-3","DOIUrl":null,"url":null,"abstract":"<p><p>According to the uncertain geographic context problem, a lack of temporal information can hinder measures of bias in mortgage lending. This study extends previous methods to: (1) measure the persistence of racial bias in mortgage lending for Black Americans by adding temporal trends and credit scores, and (2) evaluate the continuity of bias in discriminatory areas from 1990 to 2020. These additions create an indicator of persistent structural housing discrimination. We studied the Boston-Cambridge-Newton and Dallas-Fort Worth metropolitan statistical areas to examine distinct historical trajectories and urban development. We estimated the odds of mortgage denial for census tracts. Overall, all tracts in Boston-Cambridge-Newton (N = 1003) and Dallas-Fort Worth (N = 1312) displayed significant change, with greater odds of bias over time in Dallas-Fort Worth and lower odds in Boston-Cambridge-Newton. Historically redlined areas displayed the strongest persistence of bias. Results suggest that temporal data can identify persistence and improve sensitivity in measuring neighborhood bias. Understanding the temporality of residential exposure can increase research rigor and inform policy to reduce the health effects of racial bias.</p>","PeriodicalId":49964,"journal":{"name":"Journal of Urban Health-Bulletin of the New York Academy of Medicine","volume":" ","pages":"1037-1044"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Historical Bias in Mortgage Lending, Redlining, and Implications for the Uncertain Geographic Context Problem: A Study of Structural Housing Discrimination in Dallas and Boston.\",\"authors\":\"Alaina M Beauchamp, Jasmin A Tiro, Jennifer S Haas, Sarah C Kobrin, Margarita Alegria, Amy E Hughes\",\"doi\":\"10.1007/s11524-024-00887-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the uncertain geographic context problem, a lack of temporal information can hinder measures of bias in mortgage lending. This study extends previous methods to: (1) measure the persistence of racial bias in mortgage lending for Black Americans by adding temporal trends and credit scores, and (2) evaluate the continuity of bias in discriminatory areas from 1990 to 2020. These additions create an indicator of persistent structural housing discrimination. We studied the Boston-Cambridge-Newton and Dallas-Fort Worth metropolitan statistical areas to examine distinct historical trajectories and urban development. We estimated the odds of mortgage denial for census tracts. Overall, all tracts in Boston-Cambridge-Newton (N = 1003) and Dallas-Fort Worth (N = 1312) displayed significant change, with greater odds of bias over time in Dallas-Fort Worth and lower odds in Boston-Cambridge-Newton. Historically redlined areas displayed the strongest persistence of bias. Results suggest that temporal data can identify persistence and improve sensitivity in measuring neighborhood bias. Understanding the temporality of residential exposure can increase research rigor and inform policy to reduce the health effects of racial bias.</p>\",\"PeriodicalId\":49964,\"journal\":{\"name\":\"Journal of Urban Health-Bulletin of the New York Academy of Medicine\",\"volume\":\" \",\"pages\":\"1037-1044\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban Health-Bulletin of the New York Academy of Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11524-024-00887-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Health-Bulletin of the New York Academy of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11524-024-00887-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

根据不确定的地理环境问题,缺乏时间信息会阻碍对抵押贷款中的偏见进行衡量。本研究扩展了之前的方法:(1)通过添加时间趋势和信用评分来衡量美国黑人抵押贷款中种族偏见的持续性;(2)评估 1990 年至 2020 年歧视性地区偏见的持续性。这些新增内容创建了一个持续的结构性住房歧视指标。我们研究了波士顿-剑桥-纽顿和达拉斯-沃斯堡大都会统计区,以考察不同的历史轨迹和城市发展。我们估算了人口普查区被拒绝抵押贷款的几率。总体而言,波士顿-坎布里奇-牛顿(N = 1003)和达拉斯-沃斯堡(N = 1312)的所有普查区都发生了显著变化,随着时间的推移,达拉斯-沃斯堡的偏见几率更大,而波士顿-坎布里奇-牛顿的几率更小。历史上被划为红线的地区显示出最强的持续偏差。研究结果表明,时间数据可以识别偏差的持续性,并提高测量邻里偏差的灵敏度。了解居住地暴露的时间性可以提高研究的严谨性,并为政策提供信息,以减少种族偏见对健康的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Historical Bias in Mortgage Lending, Redlining, and Implications for the Uncertain Geographic Context Problem: A Study of Structural Housing Discrimination in Dallas and Boston.

Historical Bias in Mortgage Lending, Redlining, and Implications for the Uncertain Geographic Context Problem: A Study of Structural Housing Discrimination in Dallas and Boston.

According to the uncertain geographic context problem, a lack of temporal information can hinder measures of bias in mortgage lending. This study extends previous methods to: (1) measure the persistence of racial bias in mortgage lending for Black Americans by adding temporal trends and credit scores, and (2) evaluate the continuity of bias in discriminatory areas from 1990 to 2020. These additions create an indicator of persistent structural housing discrimination. We studied the Boston-Cambridge-Newton and Dallas-Fort Worth metropolitan statistical areas to examine distinct historical trajectories and urban development. We estimated the odds of mortgage denial for census tracts. Overall, all tracts in Boston-Cambridge-Newton (N = 1003) and Dallas-Fort Worth (N = 1312) displayed significant change, with greater odds of bias over time in Dallas-Fort Worth and lower odds in Boston-Cambridge-Newton. Historically redlined areas displayed the strongest persistence of bias. Results suggest that temporal data can identify persistence and improve sensitivity in measuring neighborhood bias. Understanding the temporality of residential exposure can increase research rigor and inform policy to reduce the health effects of racial bias.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Urban Health-Bulletin of the New York Academy of Medicine
Journal of Urban Health-Bulletin of the New York Academy of Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
9.10
自引率
3.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The Journal of Urban Health is the premier and authoritative source of rigorous analyses to advance the health and well-being of people in cities. The Journal provides a platform for interdisciplinary exploration of the evidence base for the broader determinants of health and health inequities needed to strengthen policies, programs, and governance for urban health. The Journal publishes original data, case studies, commentaries, book reviews, executive summaries of selected reports, and proceedings from important global meetings. It welcomes submissions presenting new analytic methods, including systems science approaches to urban problem solving. Finally, the Journal provides a forum linking scholars, practitioners, civil society, and policy makers from the multiple sectors that can influence the health of urban populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信