Xiangjun Zhen, Zhi Guo, Zengyan Zhang, Yong Wang, Renzhong Tai
{"title":"软 X 射线光谱光束线 BL08U1A 在 SSRF 升级。","authors":"Xiangjun Zhen, Zhi Guo, Zengyan Zhang, Yong Wang, Renzhong Tai","doi":"10.1107/S1600577524006684","DOIUrl":null,"url":null,"abstract":"<p><p>Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 10<sup>4</sup>). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180-2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 10<sup>9</sup> photons s<sup>-1</sup> (E/ΔE = 6440 @ 244 eV).</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371065/pdf/","citationCount":"0","resultStr":"{\"title\":\"The soft X-ray spectromicroscopy beamline BL08U1A upgrade at SSRF.\",\"authors\":\"Xiangjun Zhen, Zhi Guo, Zengyan Zhang, Yong Wang, Renzhong Tai\",\"doi\":\"10.1107/S1600577524006684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 10<sup>4</sup>). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180-2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 10<sup>9</sup> photons s<sup>-1</sup> (E/ΔE = 6440 @ 244 eV).</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371065/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524006684\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524006684","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The soft X-ray spectromicroscopy beamline BL08U1A upgrade at SSRF.
Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 104). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180-2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 109 photons s-1 (E/ΔE = 6440 @ 244 eV).
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.