[长江经济带三个城市群土地利用碳排放的区域差异与空间趋同]。

Q2 Environmental Science
Na Zhang, Fang-Cheng Sun, Yu-Ling Hu, Jing Tang
{"title":"[长江经济带三个城市群土地利用碳排放的区域差异与空间趋同]。","authors":"Na Zhang, Fang-Cheng Sun, Yu-Ling Hu, Jing Tang","doi":"10.13227/j.hjkx.202309059","DOIUrl":null,"url":null,"abstract":"<p><p>It is of great significance to explore the regional differences of land use carbon emission (LUCE) in the Yangtze River Economic Belt and the path of coordinated emission reduction for regional sustainable development. Based on the LUCE estimation method, this study scientifically calculated the LUCE of the three major urban agglomerations of the Yangtze River Economic Belt (Yangtze River Delta, middle reaches of the Yangtze River, and Chengdu-Chongqing urban agglomeration) from 2010 to 2020. Kernel density estimation and the spatial convergence model were used to study the dynamic evolution, regional differences, and convergence characteristics of LUCE. The results showed that: ① The carbon absorption of forest land, water areas, grassland, and unused land were relatively small in terms of carbon emissions from cultivated land and construction land. The carbon emission of construction land increased gradually, whereas the carbon absorption of four carbon sinks fluctuated little during the study period. ② The core density curves of different urban agglomerations showed different distribution patterns, extensibility, and polarization characteristics but generally tended to be balanced. ③ From 2010 to 2020, the LUCE of the Yangtze River Economic Belt as a whole showed the spatio-temporal characteristics of increasing first and then decreasing and high in the east and low in the west. The LUCE of the central cities of the three urban agglomerations were at the highest level steadily, and stable coupling mechanisms had not been established between the economic development level and the ecological environment. ④ The LUCE of the three urban agglomerations in the Yangtze River Economic Belt all had absolute <i>β</i> convergence and also had conditional <i>β</i> convergence under the model control variables such as economic development level, urbanization level, industrial structure, population density, and environmental regulation, etc., and the conditional convergence speed was greater than the absolute convergence speed in each region. The convergence speed of the Yangtze River Delta urban agglomeration was the slowest. The above conclusions provide support for the coordinated emission reduction path of the three urban agglomerations in the Yangtze River Economic Belt and are also conducive to actively and steadily promoting the realization of the goals of carbon peak and carbon neutralization.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Regional Difference and Spatial Convergence of Land Use Carbon Emissions in Three Urban Agglomerations of Yangtze River Economic Belt].\",\"authors\":\"Na Zhang, Fang-Cheng Sun, Yu-Ling Hu, Jing Tang\",\"doi\":\"10.13227/j.hjkx.202309059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is of great significance to explore the regional differences of land use carbon emission (LUCE) in the Yangtze River Economic Belt and the path of coordinated emission reduction for regional sustainable development. Based on the LUCE estimation method, this study scientifically calculated the LUCE of the three major urban agglomerations of the Yangtze River Economic Belt (Yangtze River Delta, middle reaches of the Yangtze River, and Chengdu-Chongqing urban agglomeration) from 2010 to 2020. Kernel density estimation and the spatial convergence model were used to study the dynamic evolution, regional differences, and convergence characteristics of LUCE. The results showed that: ① The carbon absorption of forest land, water areas, grassland, and unused land were relatively small in terms of carbon emissions from cultivated land and construction land. The carbon emission of construction land increased gradually, whereas the carbon absorption of four carbon sinks fluctuated little during the study period. ② The core density curves of different urban agglomerations showed different distribution patterns, extensibility, and polarization characteristics but generally tended to be balanced. ③ From 2010 to 2020, the LUCE of the Yangtze River Economic Belt as a whole showed the spatio-temporal characteristics of increasing first and then decreasing and high in the east and low in the west. The LUCE of the central cities of the three urban agglomerations were at the highest level steadily, and stable coupling mechanisms had not been established between the economic development level and the ecological environment. ④ The LUCE of the three urban agglomerations in the Yangtze River Economic Belt all had absolute <i>β</i> convergence and also had conditional <i>β</i> convergence under the model control variables such as economic development level, urbanization level, industrial structure, population density, and environmental regulation, etc., and the conditional convergence speed was greater than the absolute convergence speed in each region. The convergence speed of the Yangtze River Delta urban agglomeration was the slowest. The above conclusions provide support for the coordinated emission reduction path of the three urban agglomerations in the Yangtze River Economic Belt and are also conducive to actively and steadily promoting the realization of the goals of carbon peak and carbon neutralization.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"Huanjing Kexue/Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Huanjing Kexue/Environmental Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202309059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Huanjing Kexue/Environmental Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202309059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

探索长江经济带土地利用碳排放(LUCE)的区域差异以及区域可持续发展的协同减排路径具有重要意义。探究长江经济带土地利用碳排放的区域差异和区域可持续发展的协同减排路径具有重要意义。本研究基于LUCE估算方法,科学计算了长江经济带三大城市群(长江三角洲、长江中游和成渝城市群)2010-2020年的LUCE。从 2010 年到 2020 年。采用核密度估计和空间收敛模型研究了LUCE的动态演化、区域差异和收敛特征。结果表明:①相对于耕地和建设用地的碳排放量,林地、水域、草地和未利用地的碳吸收量相对较小。研究期间,建设用地的碳排放量逐渐增加,而四个碳汇的碳吸收量波动不大。不同城市群的核心密度曲线呈现出不同的分布规律、延展性和极化特征,但总体趋于平衡。从 2010 年到 2020 年,长江经济带的 LUCE 整体上呈现先增后减、东高西低的时空特征。三个城市群中心城市的 LUCE 稳定在最高水平,经济发展水平与生态环境之间尚未建立稳定的耦合机制。在经济发展水平、城镇化水平、产业结构、人口密度、环境规制等模型控制变量下,长江经济带三个城市群的 LUCE 均具有绝对β收敛性,也具有条件β收敛性,且条件收敛速度均大于各区域的绝对收敛速度。其中,长三角城市群的收敛速度最慢。上述结论为长江经济带三大城市群的协同减排路径提供了支持,也有利于积极稳妥地推进碳峰值和碳中和目标的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Regional Difference and Spatial Convergence of Land Use Carbon Emissions in Three Urban Agglomerations of Yangtze River Economic Belt].

It is of great significance to explore the regional differences of land use carbon emission (LUCE) in the Yangtze River Economic Belt and the path of coordinated emission reduction for regional sustainable development. Based on the LUCE estimation method, this study scientifically calculated the LUCE of the three major urban agglomerations of the Yangtze River Economic Belt (Yangtze River Delta, middle reaches of the Yangtze River, and Chengdu-Chongqing urban agglomeration) from 2010 to 2020. Kernel density estimation and the spatial convergence model were used to study the dynamic evolution, regional differences, and convergence characteristics of LUCE. The results showed that: ① The carbon absorption of forest land, water areas, grassland, and unused land were relatively small in terms of carbon emissions from cultivated land and construction land. The carbon emission of construction land increased gradually, whereas the carbon absorption of four carbon sinks fluctuated little during the study period. ② The core density curves of different urban agglomerations showed different distribution patterns, extensibility, and polarization characteristics but generally tended to be balanced. ③ From 2010 to 2020, the LUCE of the Yangtze River Economic Belt as a whole showed the spatio-temporal characteristics of increasing first and then decreasing and high in the east and low in the west. The LUCE of the central cities of the three urban agglomerations were at the highest level steadily, and stable coupling mechanisms had not been established between the economic development level and the ecological environment. ④ The LUCE of the three urban agglomerations in the Yangtze River Economic Belt all had absolute β convergence and also had conditional β convergence under the model control variables such as economic development level, urbanization level, industrial structure, population density, and environmental regulation, etc., and the conditional convergence speed was greater than the absolute convergence speed in each region. The convergence speed of the Yangtze River Delta urban agglomeration was the slowest. The above conclusions provide support for the coordinated emission reduction path of the three urban agglomerations in the Yangtze River Economic Belt and are also conducive to actively and steadily promoting the realization of the goals of carbon peak and carbon neutralization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Huanjing Kexue/Environmental Science
Huanjing Kexue/Environmental Science Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信