灾难性事件的大脑特征:情绪、显著性和认知控制。

IF 2.9 2区 心理学 Q2 NEUROSCIENCES
Laura Mas-Cuesta, Sabina Baltruschat, Antonio Cándido, Andrés Catena
{"title":"灾难性事件的大脑特征:情绪、显著性和认知控制。","authors":"Laura Mas-Cuesta, Sabina Baltruschat, Antonio Cándido, Andrés Catena","doi":"10.1111/psyp.14674","DOIUrl":null,"url":null,"abstract":"<p><p>Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain signatures of catastrophic events: Emotion, salience, and cognitive control.\",\"authors\":\"Laura Mas-Cuesta, Sabina Baltruschat, Antonio Cándido, Andrés Catena\",\"doi\":\"10.1111/psyp.14674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14674\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14674","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑的预期活动使得预测预期情况的发生成为可能。然而,像交通事故这样的事件在统计学上是不可预测的,并可能产生灾难性后果。本研究调查了与预测和处理此类不可避免的意外事故相关的大脑活动和有效连接。我们要求 161 名参与者驾驶摩托车模拟器,同时记录他们的脑电活动。其中,90 名参与者在驾驶过程中至少经历过一次事故。我们进行了受试者内部和受试者之间的比较。在事故发生前,右侧下顶叶(IPL)、左侧前扣带回皮层(ACC)和右侧岛叶在事故发生时显示出更高的活动。在事故后阶段,双侧眶额皮层、右侧 IPL、双侧 ACC 以及额中回和额叶上回在事故状态下的活动也有所增加。我们观察到,在事故发生前,边缘网络(LN)节点内部以及注意网络节点之间的有效连接性更强。在事故后阶段,我们还观察到网络之间的有效连接更强,从腹侧注意网络(VAN)到躯体运动网络,以及从视觉网络、VAN 和默认模式网络的节点到额顶网络、LN 和注意网络的节点。这表明,激活与显著性相关的过程和情绪处理过程可以预测事故的发生。一旦事故发生,就会对新信息进行整合和评估,并启动控制过程,使行为适应环境的新要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain signatures of catastrophic events: Emotion, salience, and cognitive control.

Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychophysiology
Psychophysiology 医学-神经科学
CiteScore
6.80
自引率
8.10%
发文量
225
审稿时长
2 months
期刊介绍: Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信