{"title":"发现叶绿体相关蛋白质降解系统的一个组成部分。","authors":"","doi":"10.1038/s41477-024-01770-4","DOIUrl":null,"url":null,"abstract":"Regulation of chloroplast protein import by chloroplast-associated protein degradation (CHLORAD) is crucial for chloroplast biogenesis and plant development. This study identifies PUX10 as a CHLORAD component that functions as a membrane-bound scaffold to recruit cytosolic Cdc48 to the chloroplast surface and bring it into proximity with CHLORAD substrates.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of a component of the chloroplast-associated protein degradation system\",\"authors\":\"\",\"doi\":\"10.1038/s41477-024-01770-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulation of chloroplast protein import by chloroplast-associated protein degradation (CHLORAD) is crucial for chloroplast biogenesis and plant development. This study identifies PUX10 as a CHLORAD component that functions as a membrane-bound scaffold to recruit cytosolic Cdc48 to the chloroplast surface and bring it into proximity with CHLORAD substrates.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01770-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01770-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Discovery of a component of the chloroplast-associated protein degradation system
Regulation of chloroplast protein import by chloroplast-associated protein degradation (CHLORAD) is crucial for chloroplast biogenesis and plant development. This study identifies PUX10 as a CHLORAD component that functions as a membrane-bound scaffold to recruit cytosolic Cdc48 to the chloroplast surface and bring it into proximity with CHLORAD substrates.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.