{"title":"降低氢化物高温超导稳定压力的视角。","authors":"Qiwen Jiang, Ling Chen, Mingyang Du, Defang Duan","doi":"10.1088/1361-648X/ad7217","DOIUrl":null,"url":null,"abstract":"<p><p>The theoretical predictions and experimental syntheses of hydrogen sulfide (H<sub>3</sub>S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides.\",\"authors\":\"Qiwen Jiang, Ling Chen, Mingyang Du, Defang Duan\",\"doi\":\"10.1088/1361-648X/ad7217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The theoretical predictions and experimental syntheses of hydrogen sulfide (H<sub>3</sub>S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7217\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7217","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides.
The theoretical predictions and experimental syntheses of hydrogen sulfide (H3S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.