{"title":"基于碲化镉量子点的葡萄糖荧光光度传感器的制作。","authors":"Ghasem Rezanejade Bardajee, Afsaneh Rahimi Chahrogh, Aazam Monfared","doi":"10.1007/s10895-024-03885-5","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a chronic metabolic disease characterized by high blood glucose (or blood sugar) levels, which harms the heart, blood vessels, eyes, kidneys, and nerves over time. So, it is crucial to regularly control glucose concentration in biological fluids to check its targets, reduce unpleasant symptoms of high and low blood sugar, and avoid long-term diabetes complications. This study developed a simple, rapid, sensitive, and cost-effective fluorescence system for glucose determination. The fluorescent Aptasensor was fabricated using cadmium telluride quantum dots (CdTe QDs) modified with thioglycolic acid and functionalized with thiol-glucose-aptamer through ligand exchange. The thiol-glucose-aptamer interacted directly with CdTe QDs, increasing fluorescence intensity. However, it decreased when the target molecules of glucose were introduced. The structural and morphological characteristics of the Aptasensor were confirmed by various analytical methods such as UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). According to the typical Stern-Volmer equation, the relationship between fluorescent quenching and target concentration was linear with a detection limit (LOD) of 0.13 ± 1.95 × 10<sup>-11</sup> mol L<sup>-1</sup> and a relative standard deviation (RSD) of 1.05%. The Aptasensor demonstrated high specificity towards the target and stability over 28 days. Furthermore, it detected glucose in human serum and urine with a recovery rate of up to 99.74%. The results indicate that the fluorescent Aptasensor could be valuable in developing robust sensing technology for low-concentrated analytes.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Glucose Fluorescent Aptasensor Based on CdTe Quantum Dots.\",\"authors\":\"Ghasem Rezanejade Bardajee, Afsaneh Rahimi Chahrogh, Aazam Monfared\",\"doi\":\"10.1007/s10895-024-03885-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is a chronic metabolic disease characterized by high blood glucose (or blood sugar) levels, which harms the heart, blood vessels, eyes, kidneys, and nerves over time. So, it is crucial to regularly control glucose concentration in biological fluids to check its targets, reduce unpleasant symptoms of high and low blood sugar, and avoid long-term diabetes complications. This study developed a simple, rapid, sensitive, and cost-effective fluorescence system for glucose determination. The fluorescent Aptasensor was fabricated using cadmium telluride quantum dots (CdTe QDs) modified with thioglycolic acid and functionalized with thiol-glucose-aptamer through ligand exchange. The thiol-glucose-aptamer interacted directly with CdTe QDs, increasing fluorescence intensity. However, it decreased when the target molecules of glucose were introduced. The structural and morphological characteristics of the Aptasensor were confirmed by various analytical methods such as UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). According to the typical Stern-Volmer equation, the relationship between fluorescent quenching and target concentration was linear with a detection limit (LOD) of 0.13 ± 1.95 × 10<sup>-11</sup> mol L<sup>-1</sup> and a relative standard deviation (RSD) of 1.05%. The Aptasensor demonstrated high specificity towards the target and stability over 28 days. Furthermore, it detected glucose in human serum and urine with a recovery rate of up to 99.74%. The results indicate that the fluorescent Aptasensor could be valuable in developing robust sensing technology for low-concentrated analytes.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03885-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03885-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fabrication of Glucose Fluorescent Aptasensor Based on CdTe Quantum Dots.
Diabetes is a chronic metabolic disease characterized by high blood glucose (or blood sugar) levels, which harms the heart, blood vessels, eyes, kidneys, and nerves over time. So, it is crucial to regularly control glucose concentration in biological fluids to check its targets, reduce unpleasant symptoms of high and low blood sugar, and avoid long-term diabetes complications. This study developed a simple, rapid, sensitive, and cost-effective fluorescence system for glucose determination. The fluorescent Aptasensor was fabricated using cadmium telluride quantum dots (CdTe QDs) modified with thioglycolic acid and functionalized with thiol-glucose-aptamer through ligand exchange. The thiol-glucose-aptamer interacted directly with CdTe QDs, increasing fluorescence intensity. However, it decreased when the target molecules of glucose were introduced. The structural and morphological characteristics of the Aptasensor were confirmed by various analytical methods such as UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). According to the typical Stern-Volmer equation, the relationship between fluorescent quenching and target concentration was linear with a detection limit (LOD) of 0.13 ± 1.95 × 10-11 mol L-1 and a relative standard deviation (RSD) of 1.05%. The Aptasensor demonstrated high specificity towards the target and stability over 28 days. Furthermore, it detected glucose in human serum and urine with a recovery rate of up to 99.74%. The results indicate that the fluorescent Aptasensor could be valuable in developing robust sensing technology for low-concentrated analytes.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.