Alice Bernard, Claudia Eggstein, Linyan Tang, Marius Keller, Andreas Körner, Valbona Mirakaj, Peter Rosenberger
{"title":"Plexin C1 影响对细胞内 LPS 的免疫反应和小鼠败血症的存活率。","authors":"Alice Bernard, Claudia Eggstein, Linyan Tang, Marius Keller, Andreas Körner, Valbona Mirakaj, Peter Rosenberger","doi":"10.1186/s12929-024-01074-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intracellular sensing of lipopolysaccharide (LPS) is essential for the immune response against gram-negative bacteria and results in activation of caspase-11 and pyroptotic cell death with fatal consequences in sepsis. We found the neuronal guidance receptor plexin C1 (PLXNC1) influences the intracellular response to LPS.</p><p><strong>Methods: </strong>We employed a murine model of sepsis via cecal ligation and binding (CLP), using PLXNC1-/- mice and littermate controls, and additionally transfected murine bone-marrow-derived macrophages (BMDMs) from both genotypes with LPS to achieve activation of the noncanonical inflammasome ex vivo. Additionally, we transfected the PLXNC1 ligand SL4c-d in vivo and ex vivo to examine its effect on intracellular LPS response.</p><p><strong>Results: </strong>We found the neuronal guidance receptor PLXNC1 dampens the intracellular response to LPS by interacting with adenylate cyclase 4 (ADCY4) and protein kinase A activity, which in turn diminishes caspase-11 expression. The absence of PLXNC1 results in excessive inflammation marked by increased cytokine release, increased secondary organ injury and reduced sepsis survival in a murine sepsis model induced by CLP. Notably, administration of SL4c-d-peptide ligand of PLXNC1-reduces the inflammatory response during CLP-induced sepsis and improves survival.</p><p><strong>Conclusions: </strong>These results elucidate a previously unknown mechanism for PLXNC1 suppressing excessive noncanonical inflammasome activity and offer a new potential target for treatment of sepsis with its detrimental effects.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"82"},"PeriodicalIF":9.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plexin C1 influences immune response to intracellular LPS and survival in murine sepsis.\",\"authors\":\"Alice Bernard, Claudia Eggstein, Linyan Tang, Marius Keller, Andreas Körner, Valbona Mirakaj, Peter Rosenberger\",\"doi\":\"10.1186/s12929-024-01074-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intracellular sensing of lipopolysaccharide (LPS) is essential for the immune response against gram-negative bacteria and results in activation of caspase-11 and pyroptotic cell death with fatal consequences in sepsis. We found the neuronal guidance receptor plexin C1 (PLXNC1) influences the intracellular response to LPS.</p><p><strong>Methods: </strong>We employed a murine model of sepsis via cecal ligation and binding (CLP), using PLXNC1-/- mice and littermate controls, and additionally transfected murine bone-marrow-derived macrophages (BMDMs) from both genotypes with LPS to achieve activation of the noncanonical inflammasome ex vivo. Additionally, we transfected the PLXNC1 ligand SL4c-d in vivo and ex vivo to examine its effect on intracellular LPS response.</p><p><strong>Results: </strong>We found the neuronal guidance receptor PLXNC1 dampens the intracellular response to LPS by interacting with adenylate cyclase 4 (ADCY4) and protein kinase A activity, which in turn diminishes caspase-11 expression. The absence of PLXNC1 results in excessive inflammation marked by increased cytokine release, increased secondary organ injury and reduced sepsis survival in a murine sepsis model induced by CLP. Notably, administration of SL4c-d-peptide ligand of PLXNC1-reduces the inflammatory response during CLP-induced sepsis and improves survival.</p><p><strong>Conclusions: </strong>These results elucidate a previously unknown mechanism for PLXNC1 suppressing excessive noncanonical inflammasome activity and offer a new potential target for treatment of sepsis with its detrimental effects.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":\"31 1\",\"pages\":\"82\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01074-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01074-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Plexin C1 influences immune response to intracellular LPS and survival in murine sepsis.
Background: Intracellular sensing of lipopolysaccharide (LPS) is essential for the immune response against gram-negative bacteria and results in activation of caspase-11 and pyroptotic cell death with fatal consequences in sepsis. We found the neuronal guidance receptor plexin C1 (PLXNC1) influences the intracellular response to LPS.
Methods: We employed a murine model of sepsis via cecal ligation and binding (CLP), using PLXNC1-/- mice and littermate controls, and additionally transfected murine bone-marrow-derived macrophages (BMDMs) from both genotypes with LPS to achieve activation of the noncanonical inflammasome ex vivo. Additionally, we transfected the PLXNC1 ligand SL4c-d in vivo and ex vivo to examine its effect on intracellular LPS response.
Results: We found the neuronal guidance receptor PLXNC1 dampens the intracellular response to LPS by interacting with adenylate cyclase 4 (ADCY4) and protein kinase A activity, which in turn diminishes caspase-11 expression. The absence of PLXNC1 results in excessive inflammation marked by increased cytokine release, increased secondary organ injury and reduced sepsis survival in a murine sepsis model induced by CLP. Notably, administration of SL4c-d-peptide ligand of PLXNC1-reduces the inflammatory response during CLP-induced sepsis and improves survival.
Conclusions: These results elucidate a previously unknown mechanism for PLXNC1 suppressing excessive noncanonical inflammasome activity and offer a new potential target for treatment of sepsis with its detrimental effects.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.