信号识别颗粒 RNA 对肺炎链球菌的遗传能力和毒力至关重要。

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2024-09-19 Epub Date: 2024-08-22 DOI:10.1128/jb.00004-24
Jingjun Lin, Sook Yin Chong, Myung Whan Oh, Shi Qian Lew, Luchang Zhu, Xuejin Zhang, William H Witola, Gee W Lau
{"title":"信号识别颗粒 RNA 对肺炎链球菌的遗传能力和毒力至关重要。","authors":"Jingjun Lin, Sook Yin Chong, Myung Whan Oh, Shi Qian Lew, Luchang Zhu, Xuejin Zhang, William H Witola, Gee W Lau","doi":"10.1128/jb.00004-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptococcus pneumoniae</i> (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆<i>scRNA</i>, ∆<i>ffh,</i> and ∆<i>ftsY</i> mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆<i>scRNA</i> mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆<i>scRNA</i>, both ∆<i>ffh</i> and ∆<i>ftsY</i> mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆<i>ffh</i> and ∆<i>ftsY</i> vs ∆<i>scRNA</i> suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus.</p><p><strong>Importance: </strong><i>Streptococcus pneumoniae</i> (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0000424"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Signal recognition particle RNA is critical for genetic competence and virulence of <i>Streptococcus pneumoniae</i>.\",\"authors\":\"Jingjun Lin, Sook Yin Chong, Myung Whan Oh, Shi Qian Lew, Luchang Zhu, Xuejin Zhang, William H Witola, Gee W Lau\",\"doi\":\"10.1128/jb.00004-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Streptococcus pneumoniae</i> (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆<i>scRNA</i>, ∆<i>ffh,</i> and ∆<i>ftsY</i> mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆<i>scRNA</i> mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆<i>scRNA</i>, both ∆<i>ffh</i> and ∆<i>ftsY</i> mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆<i>ffh</i> and ∆<i>ftsY</i> vs ∆<i>scRNA</i> suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus.</p><p><strong>Importance: </strong><i>Streptococcus pneumoniae</i> (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0000424\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00004-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00004-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺炎链球菌(肺炎球菌)可引起多种重要的人类传染病,包括肺炎、肺炎引起的败血症、中耳炎和脑膜炎。肺炎球菌产生大量分泌蛋白,这些蛋白对正常生理和致病机制至关重要。这些分泌蛋白的膜靶向和转运部分由信号识别颗粒(SRP)复合物介导,该复合物由 4.5S 小细胞质 RNA(SCRNA)、Ffh 和 FtsY 蛋白组成。在这里,我们报告了肺炎球菌的 ∆scRNA 突变体、∆ffh 突变体和 ∆ftsY 突变体在能力诱导、能力纤毛产生、外源 DNA 吸收和遗传转化方面都有明显的缺陷。此外,∆scRNA 突变体在小鼠菌血症和肺炎模型中的表现也明显减弱。有趣的是,与 ∆scRNA 不同的是,∆ffh 和 ∆ftsY 突变体在 Todd-Hewitt 琼脂上都有生长缺陷,而提供游离氨基酸或血清可减轻这些缺陷。Δffh和ΔftsY与ΔscRNA之间的营养需求差异表明,Ffh和FtsY在缺乏ScRNA的情况下可能具有部分功能。最后,插入酶 YidC2 可在功能上挽救其他链球菌物种中的一些 SRP 突变,但对肺炎球菌的遗传转化并不重要。总之,这些结果表明,SCRNA 对肺炎球菌遗传能力和毒力的成功发展至关重要:肺炎链球菌(肺炎球菌)会导致人类多种重要的传染性疾病。信号识别颗粒(SRP)复合物由 4.5S 小细胞质 RNA(SCRNA)、Ffh 和 FtsY 蛋白组成,在所有生物体中介导膜靶向和分泌蛋白的转运。然而,SRP 和 ScRNA 在诱导肺炎球菌遗传转化和毒力的能力系统过程中的作用还没有定性。通过结合使用遗传学、生物化学、蛋白质组学和成像方法,我们证明了 SRP 复合物在基因转化、菌血症和肺炎感染期间的毒力以及营养获取所需的能力系统调控效应物的膜靶向过程中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal recognition particle RNA is critical for genetic competence and virulence of Streptococcus pneumoniae.

Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus.

Importance: Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信