Nana He, Shaojie Zhou, Chuanming Zhou, Weikang Yang, Sheng Zhang, Deqiang Yan, Xiaowen Ji, Wei Liu
{"title":"昆虫病原蜡样芽孢杆菌损害斑翅果蝇的适应性","authors":"Nana He, Shaojie Zhou, Chuanming Zhou, Weikang Yang, Sheng Zhang, Deqiang Yan, Xiaowen Ji, Wei Liu","doi":"10.1111/1744-7917.13439","DOIUrl":null,"url":null,"abstract":"<p><p>Drosophila suzukii is a notorious pest which causes devastating damage to thin-skinned fruits, and the larvae feed on the fruit, causing extensive agricultural economic loss. The current application of insecticides to manage this pest results in serious resistance and environmental hazards, so an alternative strategy for D. suzukii biocontrol is urgently needed. Here, we reported that entomopathogenic Bacillus cereus has the potential to biocontrol D. suzukii. We isolated and identified the bacterial strain, B. cereus H1, that was detrimental to the fitness of both D. suzukii progenies and parents. D. suzukii was robustly repelled to depositing eggs on the halves with metabolites of B. cereus H1. Both males and females of D. suzukii were susceptible to B. cereus H1. B. cereus H1 significantly arrested larval development with at least 40% lethal larvae. The median lethal time (LT50) of males and females of D. suzukii challenged with B. cereus H1 was 3 and 2 d, respectively. Moreover, B. cereus H1 disrupted the intestinal integrity and pH value of D. suzukii and resulted in an increase in bacterial load of guts and hemolymph. Mechanistically, infection of B. cereus H1 led to the activation of the dual oxidase (DUOX)-ROS-Jun N-terminal kinase (JNK) pathway. The findings showed that the entomopathogen B. cereus H1 could potentially act as a biological control agent against D. suzukii, advancing fundamental concepts of integrated pest management programs against D. suzukii.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entomopathogenic Bacillus cereus impairs the fitness of the spotted-wing drosophila, Drosophila suzukii.\",\"authors\":\"Nana He, Shaojie Zhou, Chuanming Zhou, Weikang Yang, Sheng Zhang, Deqiang Yan, Xiaowen Ji, Wei Liu\",\"doi\":\"10.1111/1744-7917.13439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drosophila suzukii is a notorious pest which causes devastating damage to thin-skinned fruits, and the larvae feed on the fruit, causing extensive agricultural economic loss. The current application of insecticides to manage this pest results in serious resistance and environmental hazards, so an alternative strategy for D. suzukii biocontrol is urgently needed. Here, we reported that entomopathogenic Bacillus cereus has the potential to biocontrol D. suzukii. We isolated and identified the bacterial strain, B. cereus H1, that was detrimental to the fitness of both D. suzukii progenies and parents. D. suzukii was robustly repelled to depositing eggs on the halves with metabolites of B. cereus H1. Both males and females of D. suzukii were susceptible to B. cereus H1. B. cereus H1 significantly arrested larval development with at least 40% lethal larvae. The median lethal time (LT50) of males and females of D. suzukii challenged with B. cereus H1 was 3 and 2 d, respectively. Moreover, B. cereus H1 disrupted the intestinal integrity and pH value of D. suzukii and resulted in an increase in bacterial load of guts and hemolymph. Mechanistically, infection of B. cereus H1 led to the activation of the dual oxidase (DUOX)-ROS-Jun N-terminal kinase (JNK) pathway. The findings showed that the entomopathogen B. cereus H1 could potentially act as a biological control agent against D. suzukii, advancing fundamental concepts of integrated pest management programs against D. suzukii.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13439\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13439","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Entomopathogenic Bacillus cereus impairs the fitness of the spotted-wing drosophila, Drosophila suzukii.
Drosophila suzukii is a notorious pest which causes devastating damage to thin-skinned fruits, and the larvae feed on the fruit, causing extensive agricultural economic loss. The current application of insecticides to manage this pest results in serious resistance and environmental hazards, so an alternative strategy for D. suzukii biocontrol is urgently needed. Here, we reported that entomopathogenic Bacillus cereus has the potential to biocontrol D. suzukii. We isolated and identified the bacterial strain, B. cereus H1, that was detrimental to the fitness of both D. suzukii progenies and parents. D. suzukii was robustly repelled to depositing eggs on the halves with metabolites of B. cereus H1. Both males and females of D. suzukii were susceptible to B. cereus H1. B. cereus H1 significantly arrested larval development with at least 40% lethal larvae. The median lethal time (LT50) of males and females of D. suzukii challenged with B. cereus H1 was 3 and 2 d, respectively. Moreover, B. cereus H1 disrupted the intestinal integrity and pH value of D. suzukii and resulted in an increase in bacterial load of guts and hemolymph. Mechanistically, infection of B. cereus H1 led to the activation of the dual oxidase (DUOX)-ROS-Jun N-terminal kinase (JNK) pathway. The findings showed that the entomopathogen B. cereus H1 could potentially act as a biological control agent against D. suzukii, advancing fundamental concepts of integrated pest management programs against D. suzukii.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.