Dian Eurike Septyaningtrias, Nur Salisa Siddik Muliyantoro, Yustina Andwi Ari Sumiwi, Rina Susilowati
{"title":"抗炎和神经胶质反应可维持三甲基锡处理过的大鼠的正常结肠功能。","authors":"Dian Eurike Septyaningtrias, Nur Salisa Siddik Muliyantoro, Yustina Andwi Ari Sumiwi, Rina Susilowati","doi":"10.1007/s00418-024-02320-x","DOIUrl":null,"url":null,"abstract":"<p><p>Studies on the contribution of enteric neuropathy and intestinal homeostasis to central nervous system degeneration using animal models have reported varying results. Recently, colonic myenteric plexus degeneration was observed in trimethyltin-treated rats. Further characterization of this animal model is necessary to determine its potential for investigating the relationship between the enteric nervous system and central nervous system degeneration. In this study, trimethyltin-treated rats (8 mg/kg body weight, i.p.) were used to measure colonic function, structure, and possible colon abnormalities. The colonic function was assessed by measuring fecal pellet output and transit time. Hematoxylin and eosin staining and immunohistochemistry were performed to evaluate inflammatory profiles and intestinal epithelial cell homeostasis. The expression of mRNA encoding tight junction proteins was quantified with quantitative PCR to determine colon permeability. Histological examination of the colon revealed mucosal immune cell infiltration, crypt damage, and high iNOS and arginase-1 expression in the mucosal layer of trimethyltin-treated rats. At the same time, trimethyltin induced high expression of iNOS, arginase-1, and GFAP and increased cell death in the colonic myenteric plexus. The low cell proliferation and low goblet cell distribution suggested altered intestinal epithelial cell homeostasis in trimethyltin-treated rats. Trimethyltin also upregulated claudin 1 expression. However, normal colon function was preserved. In conclusion, the results show that trimethyltin induces colon inflammation and cell death in the colonic myenteric plexus, and disrupts intestinal epithelial cell homeostasis. However, the balance between anti-inflammatory and pro-inflammatory responses maintains normal colon function in trimethyltin-treated rats.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory and glial response maintain normal colon function in trimethyltin-treated rats.\",\"authors\":\"Dian Eurike Septyaningtrias, Nur Salisa Siddik Muliyantoro, Yustina Andwi Ari Sumiwi, Rina Susilowati\",\"doi\":\"10.1007/s00418-024-02320-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies on the contribution of enteric neuropathy and intestinal homeostasis to central nervous system degeneration using animal models have reported varying results. Recently, colonic myenteric plexus degeneration was observed in trimethyltin-treated rats. Further characterization of this animal model is necessary to determine its potential for investigating the relationship between the enteric nervous system and central nervous system degeneration. In this study, trimethyltin-treated rats (8 mg/kg body weight, i.p.) were used to measure colonic function, structure, and possible colon abnormalities. The colonic function was assessed by measuring fecal pellet output and transit time. Hematoxylin and eosin staining and immunohistochemistry were performed to evaluate inflammatory profiles and intestinal epithelial cell homeostasis. The expression of mRNA encoding tight junction proteins was quantified with quantitative PCR to determine colon permeability. Histological examination of the colon revealed mucosal immune cell infiltration, crypt damage, and high iNOS and arginase-1 expression in the mucosal layer of trimethyltin-treated rats. At the same time, trimethyltin induced high expression of iNOS, arginase-1, and GFAP and increased cell death in the colonic myenteric plexus. The low cell proliferation and low goblet cell distribution suggested altered intestinal epithelial cell homeostasis in trimethyltin-treated rats. Trimethyltin also upregulated claudin 1 expression. However, normal colon function was preserved. In conclusion, the results show that trimethyltin induces colon inflammation and cell death in the colonic myenteric plexus, and disrupts intestinal epithelial cell homeostasis. However, the balance between anti-inflammatory and pro-inflammatory responses maintains normal colon function in trimethyltin-treated rats.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-024-02320-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-024-02320-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Anti-inflammatory and glial response maintain normal colon function in trimethyltin-treated rats.
Studies on the contribution of enteric neuropathy and intestinal homeostasis to central nervous system degeneration using animal models have reported varying results. Recently, colonic myenteric plexus degeneration was observed in trimethyltin-treated rats. Further characterization of this animal model is necessary to determine its potential for investigating the relationship between the enteric nervous system and central nervous system degeneration. In this study, trimethyltin-treated rats (8 mg/kg body weight, i.p.) were used to measure colonic function, structure, and possible colon abnormalities. The colonic function was assessed by measuring fecal pellet output and transit time. Hematoxylin and eosin staining and immunohistochemistry were performed to evaluate inflammatory profiles and intestinal epithelial cell homeostasis. The expression of mRNA encoding tight junction proteins was quantified with quantitative PCR to determine colon permeability. Histological examination of the colon revealed mucosal immune cell infiltration, crypt damage, and high iNOS and arginase-1 expression in the mucosal layer of trimethyltin-treated rats. At the same time, trimethyltin induced high expression of iNOS, arginase-1, and GFAP and increased cell death in the colonic myenteric plexus. The low cell proliferation and low goblet cell distribution suggested altered intestinal epithelial cell homeostasis in trimethyltin-treated rats. Trimethyltin also upregulated claudin 1 expression. However, normal colon function was preserved. In conclusion, the results show that trimethyltin induces colon inflammation and cell death in the colonic myenteric plexus, and disrupts intestinal epithelial cell homeostasis. However, the balance between anti-inflammatory and pro-inflammatory responses maintains normal colon function in trimethyltin-treated rats.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.