Mereke Kenzhekhanova, Almas Mukhametov, Irek Gaisin, Laura Mamayeva
{"title":"苹果切片干燥前的低温大气等离子体处理多模式智能方法。","authors":"Mereke Kenzhekhanova, Almas Mukhametov, Irek Gaisin, Laura Mamayeva","doi":"10.1177/10820132241274966","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a comprehensive analysis of the impact of plasma treatment on the browning inhibition. A 30 min plasma treatment resulted in a pronounced decrease in the concentration of flavan-3-ols, which play a pivotal role in antioxidant defense and browning prevention. This significant reduction is likely due to plasma-induced oxidative stress, which can lead to the breakdown of these compounds or their conversion into other phenolic structures. Simultaneously, a slight increase in dihydrochalcones and flavonols was observed, suggesting a selective effect of plasma on different phenolic classes. The increase in these compounds could be attributed to the plasma's ability to induce specific reactions that generate these phenolics from other precursors present in the apples. The reduction in flavan-3-ols may affect the antioxidant capacity and health benefits associated with the apples, while the increase in dihydrochalcones and flavonols could have a positive impact on the flavor profile and potential health-promoting properties. Moreover, these modifications could contribute to the extension of shelf-life and maintenance of sensory qualities, making plasma treatment a valuable tool in the food industry for enhancing product stability and consumer appeal.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"10820132241274966"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal intelligent approach to low-temperature atmospheric plasma processing of apple slices before drying.\",\"authors\":\"Mereke Kenzhekhanova, Almas Mukhametov, Irek Gaisin, Laura Mamayeva\",\"doi\":\"10.1177/10820132241274966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a comprehensive analysis of the impact of plasma treatment on the browning inhibition. A 30 min plasma treatment resulted in a pronounced decrease in the concentration of flavan-3-ols, which play a pivotal role in antioxidant defense and browning prevention. This significant reduction is likely due to plasma-induced oxidative stress, which can lead to the breakdown of these compounds or their conversion into other phenolic structures. Simultaneously, a slight increase in dihydrochalcones and flavonols was observed, suggesting a selective effect of plasma on different phenolic classes. The increase in these compounds could be attributed to the plasma's ability to induce specific reactions that generate these phenolics from other precursors present in the apples. The reduction in flavan-3-ols may affect the antioxidant capacity and health benefits associated with the apples, while the increase in dihydrochalcones and flavonols could have a positive impact on the flavor profile and potential health-promoting properties. Moreover, these modifications could contribute to the extension of shelf-life and maintenance of sensory qualities, making plasma treatment a valuable tool in the food industry for enhancing product stability and consumer appeal.</p>\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":\" \",\"pages\":\"10820132241274966\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132241274966\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132241274966","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Multimodal intelligent approach to low-temperature atmospheric plasma processing of apple slices before drying.
This study presents a comprehensive analysis of the impact of plasma treatment on the browning inhibition. A 30 min plasma treatment resulted in a pronounced decrease in the concentration of flavan-3-ols, which play a pivotal role in antioxidant defense and browning prevention. This significant reduction is likely due to plasma-induced oxidative stress, which can lead to the breakdown of these compounds or their conversion into other phenolic structures. Simultaneously, a slight increase in dihydrochalcones and flavonols was observed, suggesting a selective effect of plasma on different phenolic classes. The increase in these compounds could be attributed to the plasma's ability to induce specific reactions that generate these phenolics from other precursors present in the apples. The reduction in flavan-3-ols may affect the antioxidant capacity and health benefits associated with the apples, while the increase in dihydrochalcones and flavonols could have a positive impact on the flavor profile and potential health-promoting properties. Moreover, these modifications could contribute to the extension of shelf-life and maintenance of sensory qualities, making plasma treatment a valuable tool in the food industry for enhancing product stability and consumer appeal.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).