控制工业厂房结垢的绿色和可持续战略:利用实验和理论方法研究 Rosmarinus officinalis L. 提取物对 CaCO3 结垢的功效。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-04-01 Epub Date: 2024-08-21 DOI:10.1080/09593330.2024.2391074
Mohamed El Housse, Abdallah Hadfi, Manal A Alossaimi, Ilham Karmal, Brahim E L Ibrahimi, Said Ben-Aazza, M'barek Belattar, D E Abd-El-Khalek, Yassine Riadi, Noureddine Iberache, Imane Ammayen, Mustapha Nassiri, Sara Darbal, Ali Driouiche
{"title":"控制工业厂房结垢的绿色和可持续战略:利用实验和理论方法研究 Rosmarinus officinalis L. 提取物对 CaCO3 结垢的功效。","authors":"Mohamed El Housse, Abdallah Hadfi, Manal A Alossaimi, Ilham Karmal, Brahim E L Ibrahimi, Said Ben-Aazza, M'barek Belattar, D E Abd-El-Khalek, Yassine Riadi, Noureddine Iberache, Imane Ammayen, Mustapha Nassiri, Sara Darbal, Ali Driouiche","doi":"10.1080/09593330.2024.2391074","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, plant extracts have attracted increased interest as green alternatives to conventional anti-scaling. This is because they contain a wide range of bioactive compounds with high performance against inorganic scale. Additionally, they are biodegradable and pose minimal risks to human health and ecosystems. The present study aimed to assess the protection offered by the <i>Rosmarinus officinalis</i> L. leaf extract for industrial plant surfaces against the CaCO<sub>3</sub> scale. Before assessing the anti-scaling performance of the <i>Rosmarinus</i> extract, phytochemical characterisation was performed by quantitative assays and HPLC-DAD analysis. Subsequently, the inhibition potential of the extract was studied using the conductivity and LCEE tests at 25°C and TH = 40°f. In addition, SEM and XRD analysis were used to assess the effect of the extract on scale morphology and crystalline phases. Finally, DFT calculations and Monte Carlo simulation were carried out to enhance knowledge of the interaction between inhibitor molecules and CaCO<sub>3</sub>(104) and (110) surfaces and optimise [extract molecule - Ca]<sup>2+</sup> complexes. Phytochemical analysis revealed the presence of several phenolic compounds (rosmarinic acid, vanillic acid, cinnamic acid, rutin, kaempferol, trans chalcone and quercetin). Further LCEE studies demonstrated the promising anti-scaling activity of the extract at an effective concentration of 54 mg/L. SEM micrographs and XRD diffractograms revealed a significant change in the morphology and phases of precipitated CaCO<sub>3</sub> scales upon the addition of the inhibitor. In addition, the computational approach strongly supported the experimental results. These results underlined the <i>Rosmarinus</i> extract's potential as a valuable green and sustainable scaling inhibitor source.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1454-1467"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and sustainable strategies to control scaling in industrial plants: investigation of the efficacy of <i>Rosmarinus officinalis</i> L. Extract against CaCO<sub>3</sub> scale using experimental and theoretical approaches.\",\"authors\":\"Mohamed El Housse, Abdallah Hadfi, Manal A Alossaimi, Ilham Karmal, Brahim E L Ibrahimi, Said Ben-Aazza, M'barek Belattar, D E Abd-El-Khalek, Yassine Riadi, Noureddine Iberache, Imane Ammayen, Mustapha Nassiri, Sara Darbal, Ali Driouiche\",\"doi\":\"10.1080/09593330.2024.2391074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, plant extracts have attracted increased interest as green alternatives to conventional anti-scaling. This is because they contain a wide range of bioactive compounds with high performance against inorganic scale. Additionally, they are biodegradable and pose minimal risks to human health and ecosystems. The present study aimed to assess the protection offered by the <i>Rosmarinus officinalis</i> L. leaf extract for industrial plant surfaces against the CaCO<sub>3</sub> scale. Before assessing the anti-scaling performance of the <i>Rosmarinus</i> extract, phytochemical characterisation was performed by quantitative assays and HPLC-DAD analysis. Subsequently, the inhibition potential of the extract was studied using the conductivity and LCEE tests at 25°C and TH = 40°f. In addition, SEM and XRD analysis were used to assess the effect of the extract on scale morphology and crystalline phases. Finally, DFT calculations and Monte Carlo simulation were carried out to enhance knowledge of the interaction between inhibitor molecules and CaCO<sub>3</sub>(104) and (110) surfaces and optimise [extract molecule - Ca]<sup>2+</sup> complexes. Phytochemical analysis revealed the presence of several phenolic compounds (rosmarinic acid, vanillic acid, cinnamic acid, rutin, kaempferol, trans chalcone and quercetin). Further LCEE studies demonstrated the promising anti-scaling activity of the extract at an effective concentration of 54 mg/L. SEM micrographs and XRD diffractograms revealed a significant change in the morphology and phases of precipitated CaCO<sub>3</sub> scales upon the addition of the inhibitor. In addition, the computational approach strongly supported the experimental results. These results underlined the <i>Rosmarinus</i> extract's potential as a valuable green and sustainable scaling inhibitor source.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1454-1467\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2391074\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2391074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,植物提取物作为传统防垢剂的绿色替代品引起了越来越多的关注。这是因为植物萃取物含有多种生物活性化合物,对无机垢具有很高的防污性能。此外,植物提取物可生物降解,对人类健康和生态系统的危害极小。本研究旨在评估迷迭香叶提取物对工业植物表面 CaCO3 鳞片的保护作用。在评估迷迭香提取物的防垢性能之前,先通过定量检测和 HPLC-DAD 分析进行了植物化学特征描述。随后,在 25°C 和 TH = 40°f 条件下,使用电导率和 LCEE 测试研究了萃取物的抑制潜力。此外,还使用 SEM 和 XRD 分析评估了提取物对鳞片形态和结晶相的影响。最后,还进行了 DFT 计算和蒙特卡罗模拟,以进一步了解抑制剂分子与 CaCO3(104) 和 (110) 表面之间的相互作用,并优化[提取物分子 - Ca]2+ 复合物。植物化学分析显示了几种酚类化合物(香豆酸、香草酸、肉桂酸、芦丁、山柰酚、反式查尔酮和槲皮素)的存在。进一步的 LCEE 研究表明,有效浓度为 54 mg/L 的提取物具有良好的抗垢活性。扫描电镜显微照片和 XRD 衍射图显示,添加抑制剂后,沉淀的 CaCO3 鳞片的形态和相发生了显著变化。此外,计算方法也有力地支持了实验结果。这些结果凸显了迷迭香提取物作为一种有价值的绿色可持续阻垢剂来源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green and sustainable strategies to control scaling in industrial plants: investigation of the efficacy of Rosmarinus officinalis L. Extract against CaCO3 scale using experimental and theoretical approaches.

In recent years, plant extracts have attracted increased interest as green alternatives to conventional anti-scaling. This is because they contain a wide range of bioactive compounds with high performance against inorganic scale. Additionally, they are biodegradable and pose minimal risks to human health and ecosystems. The present study aimed to assess the protection offered by the Rosmarinus officinalis L. leaf extract for industrial plant surfaces against the CaCO3 scale. Before assessing the anti-scaling performance of the Rosmarinus extract, phytochemical characterisation was performed by quantitative assays and HPLC-DAD analysis. Subsequently, the inhibition potential of the extract was studied using the conductivity and LCEE tests at 25°C and TH = 40°f. In addition, SEM and XRD analysis were used to assess the effect of the extract on scale morphology and crystalline phases. Finally, DFT calculations and Monte Carlo simulation were carried out to enhance knowledge of the interaction between inhibitor molecules and CaCO3(104) and (110) surfaces and optimise [extract molecule - Ca]2+ complexes. Phytochemical analysis revealed the presence of several phenolic compounds (rosmarinic acid, vanillic acid, cinnamic acid, rutin, kaempferol, trans chalcone and quercetin). Further LCEE studies demonstrated the promising anti-scaling activity of the extract at an effective concentration of 54 mg/L. SEM micrographs and XRD diffractograms revealed a significant change in the morphology and phases of precipitated CaCO3 scales upon the addition of the inhibitor. In addition, the computational approach strongly supported the experimental results. These results underlined the Rosmarinus extract's potential as a valuable green and sustainable scaling inhibitor source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信