Julien Riou, Erik Studer, Anna Fesser, Tobias Magnus Schuster, Nicola Low, Matthias Egger, Anthony Hauser
{"title":"通过重复联合检测监测 SARS-CoV-2 流行情况:应用于瑞士常规数据。","authors":"Julien Riou, Erik Studer, Anna Fesser, Tobias Magnus Schuster, Nicola Low, Matthias Egger, Anthony Hauser","doi":"10.1017/S0950268824000876","DOIUrl":null,"url":null,"abstract":"<p><p>Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-random testing. Prevalence estimation in population-based samples corrects for this bias. Within this context, the pooled testing design offers many advantages, but several challenges remain with regards to the analysis of such data. We developed a Bayesian model aimed at estimating the prevalence of infection from repeated pooled testing data while (i) correcting for test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation over time and space. We validated the model in simulated scenarios, showing that the model is reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below 5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021-2022 in schools, care centres, and workplaces. We identified similar dynamics in all three settings, with prevalence peaking at 4-5% during winter 2022. We also identified differences across regions. Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths (coefficient 0.84 to 0.90). We conclude that in many practical situations, the pooled test design is a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":"152 ","pages":"e100"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surveillance of SARS-CoV-2 prevalence from repeated pooled testing: application to Swiss routine data.\",\"authors\":\"Julien Riou, Erik Studer, Anna Fesser, Tobias Magnus Schuster, Nicola Low, Matthias Egger, Anthony Hauser\",\"doi\":\"10.1017/S0950268824000876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-random testing. Prevalence estimation in population-based samples corrects for this bias. Within this context, the pooled testing design offers many advantages, but several challenges remain with regards to the analysis of such data. We developed a Bayesian model aimed at estimating the prevalence of infection from repeated pooled testing data while (i) correcting for test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation over time and space. We validated the model in simulated scenarios, showing that the model is reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below 5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021-2022 in schools, care centres, and workplaces. We identified similar dynamics in all three settings, with prevalence peaking at 4-5% during winter 2022. We also identified differences across regions. Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths (coefficient 0.84 to 0.90). We conclude that in many practical situations, the pooled test design is a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.</p>\",\"PeriodicalId\":11721,\"journal\":{\"name\":\"Epidemiology and Infection\",\"volume\":\"152 \",\"pages\":\"e100\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0950268824000876\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0950268824000876","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Surveillance of SARS-CoV-2 prevalence from repeated pooled testing: application to Swiss routine data.
Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-random testing. Prevalence estimation in population-based samples corrects for this bias. Within this context, the pooled testing design offers many advantages, but several challenges remain with regards to the analysis of such data. We developed a Bayesian model aimed at estimating the prevalence of infection from repeated pooled testing data while (i) correcting for test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation over time and space. We validated the model in simulated scenarios, showing that the model is reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below 5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021-2022 in schools, care centres, and workplaces. We identified similar dynamics in all three settings, with prevalence peaking at 4-5% during winter 2022. We also identified differences across regions. Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths (coefficient 0.84 to 0.90). We conclude that in many practical situations, the pooled test design is a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.
期刊介绍:
Epidemiology & Infection publishes original reports and reviews on all aspects of infection in humans and animals. Particular emphasis is given to the epidemiology, prevention and control of infectious diseases. The scope covers the zoonoses, outbreaks, food hygiene, vaccine studies, statistics and the clinical, social and public-health aspects of infectious disease, as well as some tropical infections. It has become the key international periodical in which to find the latest reports on recently discovered infections and new technology. For those concerned with policy and planning for the control of infections, the papers on mathematical modelling of epidemics caused by historical, current and emergent infections are of particular value.