塞内加尔落花生盆地的土壤微生物组含有促进植物生长的细菌,具有改良干旱土壤中作物的潜力。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Niokhor Bakhoum, Ethan Humm, Noor Khan, Ann M Hirsch
{"title":"塞内加尔落花生盆地的土壤微生物组含有促进植物生长的细菌,具有改良干旱土壤中作物的潜力。","authors":"Niokhor Bakhoum, Ethan Humm, Noor Khan, Ann M Hirsch","doi":"10.1139/cjm-2024-0031","DOIUrl":null,"url":null,"abstract":"<p><p>The principal methods to maintain soil fertility in Sahel soils are largely allowing fields to go fallow and manure addition. These methods are not currently sufficient to improve soil fertility. To promote biological amendments, we aimed to understand the plant-growth promoting traits of various soil microbial isolates. The soils collected in different areas in Senegal exhibited a similar eDNA profile of bacteria; the dominant microbes were Firmicutes, followed by Proteobacteria and Actinobacteria. Of 17 isolates identified and tested, the vast majority solubilized rock phosphate and a large number grew on culture medium containing 6% salt, but very few degraded starches or hydrolysed carboxymethyl cellulose or produced siderophores. Upon single inoculation, <i>Peribacillus asahii</i> RC16 and <i>Dietzia cinnamea</i> 55 significantly increased pearl millet growth and yield parameters. For cowpea, plant shoot length was significantly increased by <i>Pseudarthrobacter phenanthrenivorans</i> MKAG7 co-inoculated with <i>Bradyrhizobium elkanii</i> 20TpCR5, and nearly all rhizobacteria tested significantly improved cowpea dry weight and pod weight. Additionally, the double inoculation of <i>Dietzia cinnamea</i> 55 and MKAG7 significantly increased shoot length, dry weight, and seed head weight of pearl millet. These isolates are promising inoculants because they are ecologically-friendly, cost-effective, sustainable, and have fewer negative effects on the soil and its inhabitants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil microbiomes from the groundnut basin of Senegal contain plant growth-promoting bacteria with potential for crop improvement in arid soils.\",\"authors\":\"Niokhor Bakhoum, Ethan Humm, Noor Khan, Ann M Hirsch\",\"doi\":\"10.1139/cjm-2024-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The principal methods to maintain soil fertility in Sahel soils are largely allowing fields to go fallow and manure addition. These methods are not currently sufficient to improve soil fertility. To promote biological amendments, we aimed to understand the plant-growth promoting traits of various soil microbial isolates. The soils collected in different areas in Senegal exhibited a similar eDNA profile of bacteria; the dominant microbes were Firmicutes, followed by Proteobacteria and Actinobacteria. Of 17 isolates identified and tested, the vast majority solubilized rock phosphate and a large number grew on culture medium containing 6% salt, but very few degraded starches or hydrolysed carboxymethyl cellulose or produced siderophores. Upon single inoculation, <i>Peribacillus asahii</i> RC16 and <i>Dietzia cinnamea</i> 55 significantly increased pearl millet growth and yield parameters. For cowpea, plant shoot length was significantly increased by <i>Pseudarthrobacter phenanthrenivorans</i> MKAG7 co-inoculated with <i>Bradyrhizobium elkanii</i> 20TpCR5, and nearly all rhizobacteria tested significantly improved cowpea dry weight and pod weight. Additionally, the double inoculation of <i>Dietzia cinnamea</i> 55 and MKAG7 significantly increased shoot length, dry weight, and seed head weight of pearl millet. These isolates are promising inoculants because they are ecologically-friendly, cost-effective, sustainable, and have fewer negative effects on the soil and its inhabitants.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

维持萨赫勒土壤肥力的主要方法主要是让田地休耕和添加肥料。这些方法目前还不足以提高土壤肥力。为了促进生物改良,我们旨在了解各种土壤微生物分离物促进植物生长的特性。在塞内加尔不同地区采集的土壤显示出相似的细菌 eDNA 图谱;主要微生物是固氮菌,其次是变形菌和放线菌。在已鉴定和测试的 17 个分离菌中,绝大多数能溶解岩石磷酸盐,许多能在含盐量为 6% 的培养基上生长,但只有极少数能降解淀粉或水解羧甲基纤维素或产生嗜苷酸盐。单次接种后,Peribacillus asahii RC16 和 Dietzia cinnamea 55 能显著提高珍珠粟的生长和产量参数。在豇豆方面,与 Bradyrhizobanium elkanii 20TpCR5 联合接种的 Pseudarthrobacter phenanthrenivorans MKAG7 能显著增加植株芽长,几乎所有测试的根瘤菌都能显著提高豇豆的干重和荚果重。此外,Dietzia cinnamea 55 和 MKAG7 的双重接种也显著增加了珍珠粟的芽长、干重和籽粒重量。这些分离物是很有前景的接种剂,因为它们对生态友好、成本效益高、可持续,而且对土壤及其居民的负面影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soil microbiomes from the groundnut basin of Senegal contain plant growth-promoting bacteria with potential for crop improvement in arid soils.

The principal methods to maintain soil fertility in Sahel soils are largely allowing fields to go fallow and manure addition. These methods are not currently sufficient to improve soil fertility. To promote biological amendments, we aimed to understand the plant-growth promoting traits of various soil microbial isolates. The soils collected in different areas in Senegal exhibited a similar eDNA profile of bacteria; the dominant microbes were Firmicutes, followed by Proteobacteria and Actinobacteria. Of 17 isolates identified and tested, the vast majority solubilized rock phosphate and a large number grew on culture medium containing 6% salt, but very few degraded starches or hydrolysed carboxymethyl cellulose or produced siderophores. Upon single inoculation, Peribacillus asahii RC16 and Dietzia cinnamea 55 significantly increased pearl millet growth and yield parameters. For cowpea, plant shoot length was significantly increased by Pseudarthrobacter phenanthrenivorans MKAG7 co-inoculated with Bradyrhizobium elkanii 20TpCR5, and nearly all rhizobacteria tested significantly improved cowpea dry weight and pod weight. Additionally, the double inoculation of Dietzia cinnamea 55 and MKAG7 significantly increased shoot length, dry weight, and seed head weight of pearl millet. These isolates are promising inoculants because they are ecologically-friendly, cost-effective, sustainable, and have fewer negative effects on the soil and its inhabitants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信