Carolina Lopes da Silva, Cleber Paradzinski Cavalheiro, Cassiane Gonçalves de Oliveira da Silva, Daniela Prócida Raggio, Luciano Casagrande, Tathiane Larissa Lenzi
{"title":"树脂改性玻璃离聚物水泥的修复潜力。","authors":"Carolina Lopes da Silva, Cleber Paradzinski Cavalheiro, Cassiane Gonçalves de Oliveira da Silva, Daniela Prócida Raggio, Luciano Casagrande, Tathiane Larissa Lenzi","doi":"10.1590/1807-3107bor-2024.vol38.0076","DOIUrl":null,"url":null,"abstract":"<p><p>This in vitro study aimed to evaluate the repair bond strength of resin-modified glass ionomer cement using either the same material or a universal adhesive in the etch-and-rinse and self-etch modes plus resin composite. Twenty-four resin-modified glass ionomer cement blocks were stored in distilled water for 14 d and thermocycled. Sandpaper ground specimens were randomly assigned to three experimental groups according to the repair protocol: resin-modified glass ionomer cement (Riva Light Cure, SDI) and universal adhesive (Scotchbond Universal Adhesive, 3M Oral Care) in etch-and-rinse or self-etch modes and nanohybrid resin composite (Z350 XT, 3M Oral Care). After 24 h of water storage, the blocks were sectioned, and bonded sticks were subjected to the microtensile bond strength (μTBS) test. One-way ANOVA and Tukey's test were used to analyze the data. The failure mode was descriptively analyzed. The highest μTBS values were obtained when the resin-modified glass ionomer cement was repaired using the same material (p < 0.01). In addition, the mode of application of the universal adhesive system did not influence the repair bond strength of the resin-modified glass ionomer cement. Adhesive/mixed failures prevailed in all groups. Repair of resin-modified glass ionomers with the same material appears to be the preferred option to improve bond strength.</p>","PeriodicalId":9240,"journal":{"name":"Brazilian oral research","volume":"38 ","pages":"e076"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376604/pdf/","citationCount":"0","resultStr":"{\"title\":\"Restoration-repair potential of resin-modified glass ionomer cement.\",\"authors\":\"Carolina Lopes da Silva, Cleber Paradzinski Cavalheiro, Cassiane Gonçalves de Oliveira da Silva, Daniela Prócida Raggio, Luciano Casagrande, Tathiane Larissa Lenzi\",\"doi\":\"10.1590/1807-3107bor-2024.vol38.0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This in vitro study aimed to evaluate the repair bond strength of resin-modified glass ionomer cement using either the same material or a universal adhesive in the etch-and-rinse and self-etch modes plus resin composite. Twenty-four resin-modified glass ionomer cement blocks were stored in distilled water for 14 d and thermocycled. Sandpaper ground specimens were randomly assigned to three experimental groups according to the repair protocol: resin-modified glass ionomer cement (Riva Light Cure, SDI) and universal adhesive (Scotchbond Universal Adhesive, 3M Oral Care) in etch-and-rinse or self-etch modes and nanohybrid resin composite (Z350 XT, 3M Oral Care). After 24 h of water storage, the blocks were sectioned, and bonded sticks were subjected to the microtensile bond strength (μTBS) test. One-way ANOVA and Tukey's test were used to analyze the data. The failure mode was descriptively analyzed. The highest μTBS values were obtained when the resin-modified glass ionomer cement was repaired using the same material (p < 0.01). In addition, the mode of application of the universal adhesive system did not influence the repair bond strength of the resin-modified glass ionomer cement. Adhesive/mixed failures prevailed in all groups. Repair of resin-modified glass ionomers with the same material appears to be the preferred option to improve bond strength.</p>\",\"PeriodicalId\":9240,\"journal\":{\"name\":\"Brazilian oral research\",\"volume\":\"38 \",\"pages\":\"e076\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian oral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1807-3107bor-2024.vol38.0076\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian oral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1807-3107bor-2024.vol38.0076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Restoration-repair potential of resin-modified glass ionomer cement.
This in vitro study aimed to evaluate the repair bond strength of resin-modified glass ionomer cement using either the same material or a universal adhesive in the etch-and-rinse and self-etch modes plus resin composite. Twenty-four resin-modified glass ionomer cement blocks were stored in distilled water for 14 d and thermocycled. Sandpaper ground specimens were randomly assigned to three experimental groups according to the repair protocol: resin-modified glass ionomer cement (Riva Light Cure, SDI) and universal adhesive (Scotchbond Universal Adhesive, 3M Oral Care) in etch-and-rinse or self-etch modes and nanohybrid resin composite (Z350 XT, 3M Oral Care). After 24 h of water storage, the blocks were sectioned, and bonded sticks were subjected to the microtensile bond strength (μTBS) test. One-way ANOVA and Tukey's test were used to analyze the data. The failure mode was descriptively analyzed. The highest μTBS values were obtained when the resin-modified glass ionomer cement was repaired using the same material (p < 0.01). In addition, the mode of application of the universal adhesive system did not influence the repair bond strength of the resin-modified glass ionomer cement. Adhesive/mixed failures prevailed in all groups. Repair of resin-modified glass ionomers with the same material appears to be the preferred option to improve bond strength.