新的交叉和重组热点大规模遍布灵长类动物基因组。

IF 5.7 2区 生物学 Q1 BIOLOGY
Mina Ohadi, Masoud Arabfard, Safoura Khamse, Samira Alizadeh, Sara Vafadar, Hadi Bayat, Nahid Tajeddin, Ali M A Maddi, Ahmad Delbari, Hamid R Khorram Khorshid
{"title":"新的交叉和重组热点大规模遍布灵长类动物基因组。","authors":"Mina Ohadi, Masoud Arabfard, Safoura Khamse, Samira Alizadeh, Sara Vafadar, Hadi Bayat, Nahid Tajeddin, Ali M A Maddi, Ahmad Delbari, Hamid R Khorram Khorshid","doi":"10.1186/s13062-024-00508-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination.</p><p><strong>Methods: </strong>On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse.</p><p><strong>Results: </strong>We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human.</p><p><strong>Conclusions: </strong>We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"70"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel crossover and recombination hotspots massively spread across primate genomes.\",\"authors\":\"Mina Ohadi, Masoud Arabfard, Safoura Khamse, Samira Alizadeh, Sara Vafadar, Hadi Bayat, Nahid Tajeddin, Ali M A Maddi, Ahmad Delbari, Hamid R Khorram Khorshid\",\"doi\":\"10.1186/s13062-024-00508-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination.</p><p><strong>Methods: </strong>On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse.</p><p><strong>Results: </strong>We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human.</p><p><strong>Conclusions: </strong>We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"70\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00508-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00508-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:重组景观和随后的自然选择对生物进化和物种繁衍具有重大影响。然而,大多数交叉和重组热点尚未被发现。我们以前曾报道过 C 和 G 三核苷酸双重复单位(CG-TTUs)在交叉和重组中的相关性:在全基因组范围内,我们绘制了人类中 A 和 T 三核苷酸双重复单位(AT-TTU)的所有组合,包括 AATAAT、ATAATA、ATTATT、TTATTA、TATTAT 和 TAATAA。我们还比较了 AT-TTU 形成的菌落数(连续 AT-TTU 之间的距离):我们发现,大部分 AT-TTU (> 96%)分布在约 140 万个菌落中,遍布整个人类基因组。与 CG-TTU 群体相比,AT-TTU 群体明显更多,规模也更大。在同一菌落中很容易检测到纯合单元和纯合单元的重叠单元,这表明这些单元是不平等交叉的位点。我们发现,在所研究的灵长类物种中,有几个菌落具有动态共享性,主要是在人类中达到了最大的复杂性和规模:我们报告了具有最精细分子分辨率的新型交叉和重组热点,它们在人类和其他几种灵长类动物的基因组中大规模分布和共享。在交叉和重组方面,这些基因组的动态性远远超过了之前的设想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel crossover and recombination hotspots massively spread across primate genomes.

Background: The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination.

Methods: On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse.

Results: We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human.

Conclusions: We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信