Wilson Pearl Evangeline, Elumalai Rajalakshmi, Singaravel Mahalakshmi, Vasudevan Ramya, Banik Devkiran, Elangovan Saranya, Mohandass Ramya
{"title":"丁香酚对柔性志贺氏菌 1457 生物膜发展的影响:一种基于植物萜类化合物的食源性病原体抑制方法。","authors":"Wilson Pearl Evangeline, Elumalai Rajalakshmi, Singaravel Mahalakshmi, Vasudevan Ramya, Banik Devkiran, Elangovan Saranya, Mohandass Ramya","doi":"10.1007/s00203-024-04108-y","DOIUrl":null,"url":null,"abstract":"<div><p><i>Shigella flexneri</i> is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol’s antibacterial effects and mechanisms of action against <i>S. flexneri</i> and its impact on biofilm formation. We observed significant growth suppression of <i>S. flexneri</i> with eugenol concentrations of 8–10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (<i>yebL</i>), quorum sensing (<i>rcsC</i><i>, </i><i>sdiA</i>), and EPS production (<i>s0482</i>) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by <i>S. flexneri</i>.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen\",\"authors\":\"Wilson Pearl Evangeline, Elumalai Rajalakshmi, Singaravel Mahalakshmi, Vasudevan Ramya, Banik Devkiran, Elangovan Saranya, Mohandass Ramya\",\"doi\":\"10.1007/s00203-024-04108-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Shigella flexneri</i> is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol’s antibacterial effects and mechanisms of action against <i>S. flexneri</i> and its impact on biofilm formation. We observed significant growth suppression of <i>S. flexneri</i> with eugenol concentrations of 8–10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (<i>yebL</i>), quorum sensing (<i>rcsC</i><i>, </i><i>sdiA</i>), and EPS production (<i>s0482</i>) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by <i>S. flexneri</i>.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04108-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04108-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
柔性志贺氏菌是一种革兰氏阴性细菌,可引起志贺氏菌病和细菌性痢疾。尽管使用了各种合成抗菌剂和抗生素,但其疗效有限,引发了人们对抗生素耐药性和相关健康风险的担忧。丁香酚是一种具有抗氧化和抗菌特性的多酚,本研究将其作为一种潜在的替代治疗方法。我们的目的是评估丁香酚对柔毛杆菌的抗菌效果、作用机制及其对生物膜形成的影响。我们观察到,丁香酚浓度为 8-10 mM 时,能明显抑制变形杆菌的生长(98.29%)。使用水晶紫检测法进行的定量分析显示,在 10 mM 的浓度下,生物膜的形成明显减少(97.01%)。通过荧光激活细胞分选和扫描电子显微镜评估细胞活力和形态证实了这些发现。此外,qPCR 分析表明,与细菌生长和生物膜形成相关的粘附(yebL)、法定量感应(rcsC、sdiA)和 EPS 产生(s0482)等关键基因出现了下调。本研究表明,丁香酚可作为传统抗生素的替代品,用于治疗由柔性猪链球菌引起的志贺氏杆菌病。
Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen
Shigella flexneri is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol’s antibacterial effects and mechanisms of action against S. flexneri and its impact on biofilm formation. We observed significant growth suppression of S. flexneri with eugenol concentrations of 8–10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (yebL), quorum sensing (rcsC, sdiA), and EPS production (s0482) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by S. flexneri.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.