Circ_0006174 通过抑制 miR-940 上调 IGF1R,从而增强结直肠癌的放射抗性和肿瘤发生。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xuefeng Zhang, Fang Fang, Jiarui Zhang, Sujuan Zhang, Haonan Li, Bingyao Li, Yibo Zhong, Peng Zhen
{"title":"Circ_0006174 通过抑制 miR-940 上调 IGF1R,从而增强结直肠癌的放射抗性和肿瘤发生。","authors":"Xuefeng Zhang, Fang Fang, Jiarui Zhang, Sujuan Zhang, Haonan Li, Bingyao Li, Yibo Zhong, Peng Zhen","doi":"10.1007/s12010-024-05028-9","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most common malignancies all over the world. Increasing evidence has revealed that circular RNAs (circRNAs) are involved in the progression of CRC. In this study, we aimed to investigate the role and underlying mechanism of circ_0006174 in the development and radiosensitivity of CRC. Circ_0006174, microRNA-940 (miR-940), and insulin-like growth factor 1 receptor (IGF1R) expression levels were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). The radiosensitivity of cells also was assessed using colony formation assay. Besides, cell proliferation, apoptosis, migration, and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, and transwell assays. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the relationship between miR-940 and circ_0006174 or IGF1R. IGF1R protein level was examined using western blot. A xenograft tumor model was used to verify the function of circ_0006174 in CRC tumor growth in vivo. Circ_0006174 and IGF1R levels were elevated and miR-940 expression was decreased in CRC tissues and cells. Circ_0006174 knockdown enhanced the radiosensitivity of CRC cells by regulating cell proliferation, apoptosis, migration, and invasion in vitro. In mechanism, circ_0006174 served as a sponge for miR-940 to upregulate IGF1R expression. Moreover, circ_0006174 silencing suppressed CRC growth in vivo. Circ_0006174 boosts radioresistance of CRC cells at least partly through upregulating IGF1R expression by sponging miR-940, providing a novel theoretical basis for CRC therapy.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circ_0006174 Upregulates IGF1R to Enhance Radioresistance and Tumorigenesis in Colorectal Cancer via miR-940 Suppression.\",\"authors\":\"Xuefeng Zhang, Fang Fang, Jiarui Zhang, Sujuan Zhang, Haonan Li, Bingyao Li, Yibo Zhong, Peng Zhen\",\"doi\":\"10.1007/s12010-024-05028-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is one of the most common malignancies all over the world. Increasing evidence has revealed that circular RNAs (circRNAs) are involved in the progression of CRC. In this study, we aimed to investigate the role and underlying mechanism of circ_0006174 in the development and radiosensitivity of CRC. Circ_0006174, microRNA-940 (miR-940), and insulin-like growth factor 1 receptor (IGF1R) expression levels were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). The radiosensitivity of cells also was assessed using colony formation assay. Besides, cell proliferation, apoptosis, migration, and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, and transwell assays. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the relationship between miR-940 and circ_0006174 or IGF1R. IGF1R protein level was examined using western blot. A xenograft tumor model was used to verify the function of circ_0006174 in CRC tumor growth in vivo. Circ_0006174 and IGF1R levels were elevated and miR-940 expression was decreased in CRC tissues and cells. Circ_0006174 knockdown enhanced the radiosensitivity of CRC cells by regulating cell proliferation, apoptosis, migration, and invasion in vitro. In mechanism, circ_0006174 served as a sponge for miR-940 to upregulate IGF1R expression. Moreover, circ_0006174 silencing suppressed CRC growth in vivo. Circ_0006174 boosts radioresistance of CRC cells at least partly through upregulating IGF1R expression by sponging miR-940, providing a novel theoretical basis for CRC therapy.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05028-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05028-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大肠癌(CRC)是全球最常见的恶性肿瘤之一。越来越多的证据表明,环状 RNA(circRNA)参与了 CRC 的进展。在这项研究中,我们旨在研究 circ_0006174 在 CRC 的发展和放射敏感性中的作用和潜在机制。通过实时定量聚合酶链反应(RT-qPCR)评估了Circ_0006174、microRNA-940(miR-940)和胰岛素样生长因子1受体(IGF1R)的表达水平。细胞的辐射敏感性也通过集落形成试验进行了评估。此外,还通过细胞计数试剂盒-8(CCK-8)、流式细胞术和透孔试验检测了细胞增殖、凋亡、迁移和侵袭。为了验证 miR-940 与 circ_0006174 或 IGF1R 的关系,研究人员进行了双荧光素酶报告和 RNA 免疫沉淀(RIP)实验。IGF1R 蛋白水平用 Western 印迹法检测。使用异种移植肿瘤模型来验证 circ_0006174 在 CRC 肿瘤体内生长中的功能。在 CRC 组织和细胞中,Circ_0006174 和 IGF1R 水平升高,miR-940 表达下降。体外实验中,Circ_0006174的敲除通过调节细胞增殖、凋亡、迁移和侵袭,增强了CRC细胞的放射敏感性。在机制上,circ_0006174是miR-940上调IGF1R表达的海绵。此外,沉默 circ_0006174 还能抑制 CRC 在体内的生长。Circ_0006174至少部分是通过上调miR-940的IGF1R表达来增强CRC细胞的放射抗性的,这为CRC的治疗提供了新的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Circ_0006174 Upregulates IGF1R to Enhance Radioresistance and Tumorigenesis in Colorectal Cancer via miR-940 Suppression.

Circ_0006174 Upregulates IGF1R to Enhance Radioresistance and Tumorigenesis in Colorectal Cancer via miR-940 Suppression.

Colorectal cancer (CRC) is one of the most common malignancies all over the world. Increasing evidence has revealed that circular RNAs (circRNAs) are involved in the progression of CRC. In this study, we aimed to investigate the role and underlying mechanism of circ_0006174 in the development and radiosensitivity of CRC. Circ_0006174, microRNA-940 (miR-940), and insulin-like growth factor 1 receptor (IGF1R) expression levels were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). The radiosensitivity of cells also was assessed using colony formation assay. Besides, cell proliferation, apoptosis, migration, and invasion were detected by cell counting kit-8 (CCK-8), flow cytometry, and transwell assays. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the relationship between miR-940 and circ_0006174 or IGF1R. IGF1R protein level was examined using western blot. A xenograft tumor model was used to verify the function of circ_0006174 in CRC tumor growth in vivo. Circ_0006174 and IGF1R levels were elevated and miR-940 expression was decreased in CRC tissues and cells. Circ_0006174 knockdown enhanced the radiosensitivity of CRC cells by regulating cell proliferation, apoptosis, migration, and invasion in vitro. In mechanism, circ_0006174 served as a sponge for miR-940 to upregulate IGF1R expression. Moreover, circ_0006174 silencing suppressed CRC growth in vivo. Circ_0006174 boosts radioresistance of CRC cells at least partly through upregulating IGF1R expression by sponging miR-940, providing a novel theoretical basis for CRC therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信