Aimi A H Tajuddin, Tatsuhiko Ohto, Hisanori Tanimoto, Takeshi Fujita, Samuel Jeong, Atsushi Fukazawa, Yuto Shimoyama, Yoshitatsu Misu, Kaori Takano, Koji Matsuoka, Yoshikazu Ito
{"title":"用于将甲苯直接一步加氢转化为甲基环己烷的抗甲苯中毒高熵非贵金属阳极。","authors":"Aimi A H Tajuddin, Tatsuhiko Ohto, Hisanori Tanimoto, Takeshi Fujita, Samuel Jeong, Atsushi Fukazawa, Yuto Shimoyama, Yoshitatsu Misu, Kaori Takano, Koji Matsuoka, Yoshikazu Ito","doi":"10.1002/cssc.202401071","DOIUrl":null,"url":null,"abstract":"<p><p>The direct one-step hydrogenation of toluene to methylcyclohexane facilitated by a proton-exchange membrane water electrolyzer driven by renewable energy has garnered considerable attention for stable hydrogen storage and safe hydrogen transportation. However, a persistent challenge lies in the crossover of toluene from the cathode to the anode chamber, which deteriorates the anode and decreases its energy efficiency and lifetime. To address this challenge, the catalyst-poisoning mechanism is systematically investigated using IrO<sub>2</sub> and high-entropic non-noble-metal alloys as anodes in acidic electrolytes saturated with toluene and toluene-oxidized derivatives, such as benzaldehyde, benzyl alcohol, and benzoic acid. Benzoic acid plays an important role in polymer-like carbon-film formation by blocking the catalytically active sites on the anode surface. Moreover, Nb and the highly entropic state on the surface of the multi-element alloy lower the adsorbing ability of toluene and prevent polymer-like carbon film formation. This study contributes to the design of catalyst-poisoning-resistant anodes for organic hydride technology, advanced fuel cells, and batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401071"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toluene-Poisoning-Resistant High-Entropy Non-Noble Metal Anode for Direct One-Step Hydrogenation of Toluene to Methylcyclohexane.\",\"authors\":\"Aimi A H Tajuddin, Tatsuhiko Ohto, Hisanori Tanimoto, Takeshi Fujita, Samuel Jeong, Atsushi Fukazawa, Yuto Shimoyama, Yoshitatsu Misu, Kaori Takano, Koji Matsuoka, Yoshikazu Ito\",\"doi\":\"10.1002/cssc.202401071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The direct one-step hydrogenation of toluene to methylcyclohexane facilitated by a proton-exchange membrane water electrolyzer driven by renewable energy has garnered considerable attention for stable hydrogen storage and safe hydrogen transportation. However, a persistent challenge lies in the crossover of toluene from the cathode to the anode chamber, which deteriorates the anode and decreases its energy efficiency and lifetime. To address this challenge, the catalyst-poisoning mechanism is systematically investigated using IrO<sub>2</sub> and high-entropic non-noble-metal alloys as anodes in acidic electrolytes saturated with toluene and toluene-oxidized derivatives, such as benzaldehyde, benzyl alcohol, and benzoic acid. Benzoic acid plays an important role in polymer-like carbon-film formation by blocking the catalytically active sites on the anode surface. Moreover, Nb and the highly entropic state on the surface of the multi-element alloy lower the adsorbing ability of toluene and prevent polymer-like carbon film formation. This study contributes to the design of catalyst-poisoning-resistant anodes for organic hydride technology, advanced fuel cells, and batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401071\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401071\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401071","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Toluene-Poisoning-Resistant High-Entropy Non-Noble Metal Anode for Direct One-Step Hydrogenation of Toluene to Methylcyclohexane.
The direct one-step hydrogenation of toluene to methylcyclohexane facilitated by a proton-exchange membrane water electrolyzer driven by renewable energy has garnered considerable attention for stable hydrogen storage and safe hydrogen transportation. However, a persistent challenge lies in the crossover of toluene from the cathode to the anode chamber, which deteriorates the anode and decreases its energy efficiency and lifetime. To address this challenge, the catalyst-poisoning mechanism is systematically investigated using IrO2 and high-entropic non-noble-metal alloys as anodes in acidic electrolytes saturated with toluene and toluene-oxidized derivatives, such as benzaldehyde, benzyl alcohol, and benzoic acid. Benzoic acid plays an important role in polymer-like carbon-film formation by blocking the catalytically active sites on the anode surface. Moreover, Nb and the highly entropic state on the surface of the multi-element alloy lower the adsorbing ability of toluene and prevent polymer-like carbon film formation. This study contributes to the design of catalyst-poisoning-resistant anodes for organic hydride technology, advanced fuel cells, and batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology