Peibin Yue, Yue Chen, Monday O Ogese, Shan Sun, Xiaolei Zhang, Taiwo Esan, John K Buolamwini, James Turkson
{"title":"小分子可诱导对 stat3 二聚化和 DNA 结合活性的时间依赖性抑制,并抑制人类乳腺肿瘤异种移植。","authors":"Peibin Yue, Yue Chen, Monday O Ogese, Shan Sun, Xiaolei Zhang, Taiwo Esan, John K Buolamwini, James Turkson","doi":"10.1002/cbic.202400351","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrantly-active signal transducer and activator of transcription (Stat)3 has a causal role in many human cancers and represents a validated anticancer drug target, though it has posed significant challenge to drug development. A new small molecule, JKB887, was identified through library screening and is predicted to interact with Lys591, Arg609 and Pro63 in the phospho-tyrosine (pTyr)-binding pocket of the Stat3 SH2 domain. JKB887 inhibited Stat3 DNA-binding activity in vitro in a time-dependent manner, with IC<sub>50</sub> of 2.2-4.5 μM at 30-60-min incubation. It directly disrupted both the Stat3 binding to the cognate, high-affinity pTyr (pY) peptide, GpYLPQTV-NH<sub>2</sub> in fluorescent polarization assay with IC<sub>50</sub> of 3.5-5.5 μM at 60-90-min incubation, and to the IL-6 receptor/gp130 or Src in treated malignant cells. Treatment with JKB887 selectively blocked constitutive Stat3 phosphorylation, nuclear translocation and transcriptional activity, and Stat3-regulated gene expression, and decreased viable cell numbers, cell growth, colony formation, migration, and survival in human or mouse tumor cells. By contrast, JKB887 had minimal effects on Stat1, pErk1/2<sup>MAPK</sup>, pShc, pJAK2, or pSrc induction, or on cells that do not harbor aberrantly-active Stat3. Additionally, JKB887 inhibited growth of human breast cancer xenografts in mice. JKB887 is a Stat3-selective inhibitor with demonstrable antitumor effects against Stat3-dependent human cancers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Molecule Induces Time-Dependent Inhibition of Stat3 Dimerization and DNA-Binding Activity and Regresses Human Breast Tumor Xenografts.\",\"authors\":\"Peibin Yue, Yue Chen, Monday O Ogese, Shan Sun, Xiaolei Zhang, Taiwo Esan, John K Buolamwini, James Turkson\",\"doi\":\"10.1002/cbic.202400351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrantly-active signal transducer and activator of transcription (Stat)3 has a causal role in many human cancers and represents a validated anticancer drug target, though it has posed significant challenge to drug development. A new small molecule, JKB887, was identified through library screening and is predicted to interact with Lys591, Arg609 and Pro63 in the phospho-tyrosine (pTyr)-binding pocket of the Stat3 SH2 domain. JKB887 inhibited Stat3 DNA-binding activity in vitro in a time-dependent manner, with IC<sub>50</sub> of 2.2-4.5 μM at 30-60-min incubation. It directly disrupted both the Stat3 binding to the cognate, high-affinity pTyr (pY) peptide, GpYLPQTV-NH<sub>2</sub> in fluorescent polarization assay with IC<sub>50</sub> of 3.5-5.5 μM at 60-90-min incubation, and to the IL-6 receptor/gp130 or Src in treated malignant cells. Treatment with JKB887 selectively blocked constitutive Stat3 phosphorylation, nuclear translocation and transcriptional activity, and Stat3-regulated gene expression, and decreased viable cell numbers, cell growth, colony formation, migration, and survival in human or mouse tumor cells. By contrast, JKB887 had minimal effects on Stat1, pErk1/2<sup>MAPK</sup>, pShc, pJAK2, or pSrc induction, or on cells that do not harbor aberrantly-active Stat3. Additionally, JKB887 inhibited growth of human breast cancer xenografts in mice. JKB887 is a Stat3-selective inhibitor with demonstrable antitumor effects against Stat3-dependent human cancers.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Small Molecule Induces Time-Dependent Inhibition of Stat3 Dimerization and DNA-Binding Activity and Regresses Human Breast Tumor Xenografts.
Aberrantly-active signal transducer and activator of transcription (Stat)3 has a causal role in many human cancers and represents a validated anticancer drug target, though it has posed significant challenge to drug development. A new small molecule, JKB887, was identified through library screening and is predicted to interact with Lys591, Arg609 and Pro63 in the phospho-tyrosine (pTyr)-binding pocket of the Stat3 SH2 domain. JKB887 inhibited Stat3 DNA-binding activity in vitro in a time-dependent manner, with IC50 of 2.2-4.5 μM at 30-60-min incubation. It directly disrupted both the Stat3 binding to the cognate, high-affinity pTyr (pY) peptide, GpYLPQTV-NH2 in fluorescent polarization assay with IC50 of 3.5-5.5 μM at 60-90-min incubation, and to the IL-6 receptor/gp130 or Src in treated malignant cells. Treatment with JKB887 selectively blocked constitutive Stat3 phosphorylation, nuclear translocation and transcriptional activity, and Stat3-regulated gene expression, and decreased viable cell numbers, cell growth, colony formation, migration, and survival in human or mouse tumor cells. By contrast, JKB887 had minimal effects on Stat1, pErk1/2MAPK, pShc, pJAK2, or pSrc induction, or on cells that do not harbor aberrantly-active Stat3. Additionally, JKB887 inhibited growth of human breast cancer xenografts in mice. JKB887 is a Stat3-selective inhibitor with demonstrable antitumor effects against Stat3-dependent human cancers.