利用薄膜钇铁石榴石中的超短磁子逆转 50 纳米宽铁磁体的磁化。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shreyas S. Joglekar, Korbinian Baumgaertl, Andrea Mucchietto, Francis Berger and Dirk Grundler
{"title":"利用薄膜钇铁石榴石中的超短磁子逆转 50 纳米宽铁磁体的磁化。","authors":"Shreyas S. Joglekar, Korbinian Baumgaertl, Andrea Mucchietto, Francis Berger and Dirk Grundler","doi":"10.1039/D4NH00095A","DOIUrl":null,"url":null,"abstract":"<p >Spin waves (magnons) can enable neuromorphic computing by which one aims at overcoming limitations inherent to conventional electronics and the von Neumann architecture. Encoding magnon signal by reversing magnetization of a nanomagnetic memory bit is pivotal to realize such novel computing schemes efficiently. A magnonic neural network was recently proposed consisting of differently configured nanomagnets that control nonlinear magnon interference in an underlying yttrium iron garnet (YIG) film [Papp <em>et al.</em>, <em>Nat. Commun.</em>, 2021, <strong>12</strong>, 6422]. In this study, we explore the nonvolatile encoding of magnon signals by switching the magnetization of periodic and aperiodic arrays (gratings) of Ni<small><sub>81</sub></small>Fe<small><sub>19</sub></small> (Py) nanostripes with widths <em>w</em> between 50 nm and 200 nm. Integrating 50-nm-wide nanostripes with a coplanar waveguide, we excited magnons having a wavelength <em>λ</em> of ≈100 nm. At a small spin-precessional power of 11 nW, these ultrashort magnons switch the magnetization of 50-nm-wide Py nanostripes after they have propagated over 25 μm in YIG in an applied field. We also demonstrate the magnetization reversal of nanostripes patterned in an aperiodic sequence. We thereby show that the magnon-induced reversal happens regardless of the width and periodicity of the nanostripe gratings. Our study enlarges substantially the parameter regime for magnon-induced nanomagnet reversal on YIG and is important for realizing in-memory computing paradigms making use of magnons with ultrashort wavelengths at low power consumption.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1740-1748"},"PeriodicalIF":8.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet†\",\"authors\":\"Shreyas S. Joglekar, Korbinian Baumgaertl, Andrea Mucchietto, Francis Berger and Dirk Grundler\",\"doi\":\"10.1039/D4NH00095A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spin waves (magnons) can enable neuromorphic computing by which one aims at overcoming limitations inherent to conventional electronics and the von Neumann architecture. Encoding magnon signal by reversing magnetization of a nanomagnetic memory bit is pivotal to realize such novel computing schemes efficiently. A magnonic neural network was recently proposed consisting of differently configured nanomagnets that control nonlinear magnon interference in an underlying yttrium iron garnet (YIG) film [Papp <em>et al.</em>, <em>Nat. Commun.</em>, 2021, <strong>12</strong>, 6422]. In this study, we explore the nonvolatile encoding of magnon signals by switching the magnetization of periodic and aperiodic arrays (gratings) of Ni<small><sub>81</sub></small>Fe<small><sub>19</sub></small> (Py) nanostripes with widths <em>w</em> between 50 nm and 200 nm. Integrating 50-nm-wide nanostripes with a coplanar waveguide, we excited magnons having a wavelength <em>λ</em> of ≈100 nm. At a small spin-precessional power of 11 nW, these ultrashort magnons switch the magnetization of 50-nm-wide Py nanostripes after they have propagated over 25 μm in YIG in an applied field. We also demonstrate the magnetization reversal of nanostripes patterned in an aperiodic sequence. We thereby show that the magnon-induced reversal happens regardless of the width and periodicity of the nanostripe gratings. Our study enlarges substantially the parameter regime for magnon-induced nanomagnet reversal on YIG and is important for realizing in-memory computing paradigms making use of magnons with ultrashort wavelengths at low power consumption.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 10\",\"pages\":\" 1740-1748\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00095a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00095a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋波(磁子)可以实现神经形态计算,从而克服传统电子学和冯-诺依曼架构的固有局限。通过反转纳米磁记忆位的磁化来编码磁子信号,是高效实现这种新型计算方案的关键。最近有人提出了一种磁子神经网络,它由不同配置的纳米磁体组成,可控制底层钇铁石榴石(YIG)薄膜中的非线性磁子干扰[Papp 等人,Nat.Commun.,2021,12,6422]。在本研究中,我们通过切换宽度在 50 纳米到 200 纳米之间的 Ni81Fe19 (Py) 纳米带的周期性和非周期性阵列(光栅)的磁化,探索了磁子信号的非易失性编码。通过将 50 纳米宽的纳米带与共面波导集成,我们激发了波长 λ≈100 纳米的磁子。在 11 nW 的小自旋衰减功率下,这些超短磁子在外加磁场中于 YIG 中传播超过 25 μm 后,可切换 50 nm 宽 Py 纳米带的磁化。我们还展示了以非周期性序列图案化的纳米带的磁化反转。我们由此证明,无论纳米条纹光栅的宽度和周期如何,都会发生磁子诱导的反转。我们的研究大大拓宽了 YIG 上磁子诱导纳米磁体反转的参数范围,对于利用超短波长磁子以低功耗实现内存计算范例非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet†

Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet†

Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet†

Spin waves (magnons) can enable neuromorphic computing by which one aims at overcoming limitations inherent to conventional electronics and the von Neumann architecture. Encoding magnon signal by reversing magnetization of a nanomagnetic memory bit is pivotal to realize such novel computing schemes efficiently. A magnonic neural network was recently proposed consisting of differently configured nanomagnets that control nonlinear magnon interference in an underlying yttrium iron garnet (YIG) film [Papp et al., Nat. Commun., 2021, 12, 6422]. In this study, we explore the nonvolatile encoding of magnon signals by switching the magnetization of periodic and aperiodic arrays (gratings) of Ni81Fe19 (Py) nanostripes with widths w between 50 nm and 200 nm. Integrating 50-nm-wide nanostripes with a coplanar waveguide, we excited magnons having a wavelength λ of ≈100 nm. At a small spin-precessional power of 11 nW, these ultrashort magnons switch the magnetization of 50-nm-wide Py nanostripes after they have propagated over 25 μm in YIG in an applied field. We also demonstrate the magnetization reversal of nanostripes patterned in an aperiodic sequence. We thereby show that the magnon-induced reversal happens regardless of the width and periodicity of the nanostripe gratings. Our study enlarges substantially the parameter regime for magnon-induced nanomagnet reversal on YIG and is important for realizing in-memory computing paradigms making use of magnons with ultrashort wavelengths at low power consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信