狄拉克节点线 MoB3 单层中的超高奈尔温度反铁磁性和超快激光控制去磁。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-09-04 Epub Date: 2024-08-22 DOI:10.1021/acs.nanolett.4c02914
Zhen Gao, Fengxian Ma, Ziming Zhu, Qin Zhang, Ying Liu, Yalong Jiao, Aijun Du
{"title":"狄拉克节点线 MoB3 单层中的超高奈尔温度反铁磁性和超快激光控制去磁。","authors":"Zhen Gao, Fengxian Ma, Ziming Zhu, Qin Zhang, Ying Liu, Yalong Jiao, Aijun Du","doi":"10.1021/acs.nanolett.4c02914","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (<i>T</i><sub>N</sub>), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB<sub>3</sub> monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB<sub>3</sub> monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 μeV/Mo and an ultrahigh <i>T</i><sub>N</sub> of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB<sub>3</sub> under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"10964-10971"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378283/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Néel Temperature Antiferromagnetism and Ultrafast Laser-Controlled Demagnetization in a Dirac Nodal Line MoB<sub>3</sub> Monolayer.\",\"authors\":\"Zhen Gao, Fengxian Ma, Ziming Zhu, Qin Zhang, Ying Liu, Yalong Jiao, Aijun Du\",\"doi\":\"10.1021/acs.nanolett.4c02914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (<i>T</i><sub>N</sub>), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB<sub>3</sub> monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB<sub>3</sub> monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 μeV/Mo and an ultrahigh <i>T</i><sub>N</sub> of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB<sub>3</sub> under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"10964-10971\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378283/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02914\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02914","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)反铁磁(AFM)材料具有高奈尔温度(TN)、高载流子迁移率以及在外部磁场作用下的快速自旋响应,是高效自旋电子学的巨大需求。在此,我们从理论上提出了 MoB3 单层作为 AFM 自旋电子学的理想二维平台。AFM MoB3 单层具有费米级对称保护的 4 倍退化狄拉克结点线 (DNL)。它具有 865 μeV/Mo 的高磁各向异性能和 1050 K 的超高 TN 值,是二维 AFM 的最高记录之一。重要的是,我们揭示了 AFM MoB3 在激光辐照下的超快去磁过程,它能在数百飞秒的时间尺度上从 DNL 半金属态快速过渡到金属态。这项研究为利用二维高温 DNL 半金属设计先进的自旋电子学提供了一种有效方法,并为拓扑半金属的磁化超快调制开辟了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh Néel Temperature Antiferromagnetism and Ultrafast Laser-Controlled Demagnetization in a Dirac Nodal Line MoB<sub>3</sub> Monolayer.

Ultrahigh Néel Temperature Antiferromagnetism and Ultrafast Laser-Controlled Demagnetization in a Dirac Nodal Line MoB3 Monolayer.

Two-dimensional (2D) antiferromagnetic (AFM) materials boasting a high Néel temperature (TN), high carrier mobility, and fast spin response under an external field are in great demand for efficient spintronics. Herein, we theoretically present the MoB3 monolayer as an ideal 2D platform for AFM spintronics. The AFM MoB3 monolayer features a symmetry-protected, 4-fold degenerate Dirac nodal line (DNL) at the Fermi level. It demonstrates a high magnetic anisotropy energy of 865 μeV/Mo and an ultrahigh TN of 1050 K, one of the highest recorded for 2D AFMs. Importantly, we reveal the ultrafast demagnetization of AFM MoB3 under laser irradiation, which induces a rapid transition from a DNL semimetallic state to a metallic state on the time scale of hundreds of femtoseconds. This work presents an effective method for designing advanced spintronics using 2D high-temperature DNL semimetals and opens up a new idea for ultrafast modulation of magnetization in topological semimetals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信