Jiaping Han , Kai Fu , Zhiqiang Jiang , Hao Zhang , Hongshan San , Hui Chen , Xiaopeng Lu , Carsten Blawert , Mikhail.L. Zheludkevich
{"title":"等离子电解氧化镁制备的适合骨生长的智能梯度涂层及其连续降解行为","authors":"Jiaping Han , Kai Fu , Zhiqiang Jiang , Hao Zhang , Hongshan San , Hui Chen , Xiaopeng Lu , Carsten Blawert , Mikhail.L. Zheludkevich","doi":"10.1016/j.jma.2024.05.026","DOIUrl":null,"url":null,"abstract":"<div><div>A gradient coating containing collagen and inorganic strontium/calcium phosphate (Sr/CaP) was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition. First, Sr-doped dicalcium phosphate dihydrate and hydroxyapatite (DCPD and HA) was deposited, followed by a collagen/CaP layer. The morphological evolution, sequential degradation behaviour, and <em>in vitro</em> bio-properties of the coatings were investigated. The incorporation of collagen remarkably refined the morphology of the CaP, and a more aggregated nano-spherical morphology was observed with increasing collagen concentration. Sr could partially replace Ca in the CaP crystals. Collagen combined with CaP formed a relatively stable skeletal frame, which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue, as well as a more promising proliferation and differentiation ability of osteoblasts. A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 356-378"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart gradient coating suitable for bone growth prepared on plasma-electrolytically oxidised Mg and its sequential degradation behaviour\",\"authors\":\"Jiaping Han , Kai Fu , Zhiqiang Jiang , Hao Zhang , Hongshan San , Hui Chen , Xiaopeng Lu , Carsten Blawert , Mikhail.L. Zheludkevich\",\"doi\":\"10.1016/j.jma.2024.05.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A gradient coating containing collagen and inorganic strontium/calcium phosphate (Sr/CaP) was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition. First, Sr-doped dicalcium phosphate dihydrate and hydroxyapatite (DCPD and HA) was deposited, followed by a collagen/CaP layer. The morphological evolution, sequential degradation behaviour, and <em>in vitro</em> bio-properties of the coatings were investigated. The incorporation of collagen remarkably refined the morphology of the CaP, and a more aggregated nano-spherical morphology was observed with increasing collagen concentration. Sr could partially replace Ca in the CaP crystals. Collagen combined with CaP formed a relatively stable skeletal frame, which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue, as well as a more promising proliferation and differentiation ability of osteoblasts. A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 1\",\"pages\":\"Pages 356-378\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956724001956\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001956","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Smart gradient coating suitable for bone growth prepared on plasma-electrolytically oxidised Mg and its sequential degradation behaviour
A gradient coating containing collagen and inorganic strontium/calcium phosphate (Sr/CaP) was fabricated on plasma-electrolytically oxidised magnesium via one-step cathodic electrodeposition. First, Sr-doped dicalcium phosphate dihydrate and hydroxyapatite (DCPD and HA) was deposited, followed by a collagen/CaP layer. The morphological evolution, sequential degradation behaviour, and in vitro bio-properties of the coatings were investigated. The incorporation of collagen remarkably refined the morphology of the CaP, and a more aggregated nano-spherical morphology was observed with increasing collagen concentration. Sr could partially replace Ca in the CaP crystals. Collagen combined with CaP formed a relatively stable skeletal frame, which provided sufficient barrier properties and more sites for the re-precipitation of bone tissue, as well as a more promising proliferation and differentiation ability of osteoblasts. A gradient coating that matches the requirements of bone growth at various periods is suggested for implantation.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.