{"title":"通过碱催化剂对 C-H 键的可逆活化实现 \"活 \"阴离子聚合反应","authors":"","doi":"10.1038/s41557-024-01611-z","DOIUrl":null,"url":null,"abstract":"Living anionic polymerization is generally carried out using a metal-based initiator under stringent, and ideally water-free, conditions. Now, proton transfer anionic polymerization is developed using an organic compound with an acidic C–H bond as the initiator in the presence of a base catalyst. This method offers easy access to well-defined polymers under moderate conditions.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 10","pages":"1582-1583"},"PeriodicalIF":19.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"‘Living’ anionic polymerization through reversible activation of C–H bonds with a base catalyst\",\"authors\":\"\",\"doi\":\"10.1038/s41557-024-01611-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Living anionic polymerization is generally carried out using a metal-based initiator under stringent, and ideally water-free, conditions. Now, proton transfer anionic polymerization is developed using an organic compound with an acidic C–H bond as the initiator in the presence of a base catalyst. This method offers easy access to well-defined polymers under moderate conditions.\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"16 10\",\"pages\":\"1582-1583\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41557-024-01611-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01611-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
‘Living’ anionic polymerization through reversible activation of C–H bonds with a base catalyst
Living anionic polymerization is generally carried out using a metal-based initiator under stringent, and ideally water-free, conditions. Now, proton transfer anionic polymerization is developed using an organic compound with an acidic C–H bond as the initiator in the presence of a base catalyst. This method offers easy access to well-defined polymers under moderate conditions.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.