Yu-San Huoh, Qianxia Zhang, Ricarda Törner, Sylvan C. Baca, Haribabu Arthanari, Sun Hur
{"title":"艾尔转录凝聚体的受控组装机制","authors":"Yu-San Huoh, Qianxia Zhang, Ricarda Törner, Sylvan C. Baca, Haribabu Arthanari, Sun Hur","doi":"10.1038/s41590-024-01922-w","DOIUrl":null,"url":null,"abstract":"Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators. Sun Hur and colleagues examine the mechanism of Aire protein function underlying peripheral tissue antigen gene expression in thymic mTECs. They show that Aire condensates assemble on enhancers that are subject to intricate regulatory mechanisms, ensuring tight coordination of Aire CARD polymerization with genomic target recognition.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"25 9","pages":"1580-1592"},"PeriodicalIF":27.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41590-024-01922-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanism for controlled assembly of transcriptional condensates by Aire\",\"authors\":\"Yu-San Huoh, Qianxia Zhang, Ricarda Törner, Sylvan C. Baca, Haribabu Arthanari, Sun Hur\",\"doi\":\"10.1038/s41590-024-01922-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators. Sun Hur and colleagues examine the mechanism of Aire protein function underlying peripheral tissue antigen gene expression in thymic mTECs. They show that Aire condensates assemble on enhancers that are subject to intricate regulatory mechanisms, ensuring tight coordination of Aire CARD polymerization with genomic target recognition.\",\"PeriodicalId\":19032,\"journal\":{\"name\":\"Nature Immunology\",\"volume\":\"25 9\",\"pages\":\"1580-1592\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41590-024-01922-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41590-024-01922-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41590-024-01922-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Mechanism for controlled assembly of transcriptional condensates by Aire
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators. Sun Hur and colleagues examine the mechanism of Aire protein function underlying peripheral tissue antigen gene expression in thymic mTECs. They show that Aire condensates assemble on enhancers that are subject to intricate regulatory mechanisms, ensuring tight coordination of Aire CARD polymerization with genomic target recognition.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.