{"title":"在高潮和海平面上升综合情景下基于热带气旋风暴潮的洪水风险评估:中国海南岛案例研究","authors":"Ziying Zhou, Saini Yang, Fuyu Hu, Bingrui Chen, Xianwu Shi, Xiaoyan Liu","doi":"10.1029/2023EF004236","DOIUrl":null,"url":null,"abstract":"<p>In the context of climate change, coastal flood risk is intensifying globally, particularly in China, where intricate coastlines and frequent tropical cyclones make storm surges a major concern. Despite local government's efforts to initiate coastal monitoring networks and qualitative risk guidelines, there remains a gap in detailed and efficient quantitative assessments for combinations of multiple sea-level components. To address this, we develop the <span>T</span>ropical <span>C</span>yclone <span>S</span>t<span>o</span>rm <span>S</span>urge-based <span>F</span>lood <span>R</span>isk <span>A</span>ssessment under <span>C</span>ombined <span>S</span>cenarios (TCSoS-FRACS). This framework integrates impacts of storm surges, high tides, and sea-level rise using a hybrid of statistical and dynamic models to balance reliability and efficiency. By combining hazard, exposure, and vulnerability, it incorporates economic and demographic factors for a deeper understanding of risk composition. Applying TCSoS-FRACS to Hainan Island reveals that the combined effects of storm surges, high tides, and sea-level rise significantly amplify local coastal flood risk, increasing economic losses to 4.27–5.90 times and affected populations to 4.96–6.23 times. Additionally, transitioning from Fossil-fueled Development (SSP5-8.5) to Sustainability (SSP1-1.9) can reduce the risk increase by approximately half. The equivalence in flood hazard between current high tides and future sea level under a sustainable scenario boosts confidence in climate change adaptation efforts. However, coastal cities with low hazard but high exposure need heightened vigilance in flood defense, as future risk could escalate sharply. Our study provides new insights into coastal flood risk on Hainan Island and other regions with similar profiles, offering a transferable and efficient tool for disaster risk management and aiding in regional sustainable development.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004236","citationCount":"0","resultStr":"{\"title\":\"Tropical Cyclone Storm Surge-Based Flood Risk Assessment Under Combined Scenarios of High Tides and Sea-Level Rise: A Case Study of Hainan Island, China\",\"authors\":\"Ziying Zhou, Saini Yang, Fuyu Hu, Bingrui Chen, Xianwu Shi, Xiaoyan Liu\",\"doi\":\"10.1029/2023EF004236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of climate change, coastal flood risk is intensifying globally, particularly in China, where intricate coastlines and frequent tropical cyclones make storm surges a major concern. Despite local government's efforts to initiate coastal monitoring networks and qualitative risk guidelines, there remains a gap in detailed and efficient quantitative assessments for combinations of multiple sea-level components. To address this, we develop the <span>T</span>ropical <span>C</span>yclone <span>S</span>t<span>o</span>rm <span>S</span>urge-based <span>F</span>lood <span>R</span>isk <span>A</span>ssessment under <span>C</span>ombined <span>S</span>cenarios (TCSoS-FRACS). This framework integrates impacts of storm surges, high tides, and sea-level rise using a hybrid of statistical and dynamic models to balance reliability and efficiency. By combining hazard, exposure, and vulnerability, it incorporates economic and demographic factors for a deeper understanding of risk composition. Applying TCSoS-FRACS to Hainan Island reveals that the combined effects of storm surges, high tides, and sea-level rise significantly amplify local coastal flood risk, increasing economic losses to 4.27–5.90 times and affected populations to 4.96–6.23 times. Additionally, transitioning from Fossil-fueled Development (SSP5-8.5) to Sustainability (SSP1-1.9) can reduce the risk increase by approximately half. The equivalence in flood hazard between current high tides and future sea level under a sustainable scenario boosts confidence in climate change adaptation efforts. However, coastal cities with low hazard but high exposure need heightened vigilance in flood defense, as future risk could escalate sharply. Our study provides new insights into coastal flood risk on Hainan Island and other regions with similar profiles, offering a transferable and efficient tool for disaster risk management and aiding in regional sustainable development.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004236\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004236","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Tropical Cyclone Storm Surge-Based Flood Risk Assessment Under Combined Scenarios of High Tides and Sea-Level Rise: A Case Study of Hainan Island, China
In the context of climate change, coastal flood risk is intensifying globally, particularly in China, where intricate coastlines and frequent tropical cyclones make storm surges a major concern. Despite local government's efforts to initiate coastal monitoring networks and qualitative risk guidelines, there remains a gap in detailed and efficient quantitative assessments for combinations of multiple sea-level components. To address this, we develop the Tropical Cyclone Storm Surge-based Flood Risk Assessment under Combined Scenarios (TCSoS-FRACS). This framework integrates impacts of storm surges, high tides, and sea-level rise using a hybrid of statistical and dynamic models to balance reliability and efficiency. By combining hazard, exposure, and vulnerability, it incorporates economic and demographic factors for a deeper understanding of risk composition. Applying TCSoS-FRACS to Hainan Island reveals that the combined effects of storm surges, high tides, and sea-level rise significantly amplify local coastal flood risk, increasing economic losses to 4.27–5.90 times and affected populations to 4.96–6.23 times. Additionally, transitioning from Fossil-fueled Development (SSP5-8.5) to Sustainability (SSP1-1.9) can reduce the risk increase by approximately half. The equivalence in flood hazard between current high tides and future sea level under a sustainable scenario boosts confidence in climate change adaptation efforts. However, coastal cities with low hazard but high exposure need heightened vigilance in flood defense, as future risk could escalate sharply. Our study provides new insights into coastal flood risk on Hainan Island and other regions with similar profiles, offering a transferable and efficient tool for disaster risk management and aiding in regional sustainable development.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.