Julia Stadler, Kathrin Lillie-Jaschniski, Sophia Zwickl, Susanne Zoels, Sebastiaan Theuns, Mathias Ritzmann, Nick Vereecke
{"title":"生物安全措施与德国农场呼吸道疾病病毒和细菌病原体检测之间的交叉相关性","authors":"Julia Stadler, Kathrin Lillie-Jaschniski, Sophia Zwickl, Susanne Zoels, Sebastiaan Theuns, Mathias Ritzmann, Nick Vereecke","doi":"10.1155/2024/6205899","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Effective porcine health management relies majorly on diagnostic tests, vaccination, treatment strategies, and a proper biosecurity management plan. However, understanding the link between circulating microbes and biosecurity measures on a pig farm is not evident. Substantial progress has been made in recent years with the availability of new diagnostic tools (e.g., sequencing-based diagnostics) and extensive biosecurity management questionnaires. However, the interpretation and correlation of these results are hampered by the abundance of gained (meta)data. Therefore, we aimed to cross-correlate viral and bacterial pathogens with respiratory tropism detected by third-generation nanopore metagenomic sequencing with biosecurity measures assessed by Biocheck.UGent™. The study was conducted on 25 sow farms with attached nurseries in Germany with known respiratory distress. The biosecurity level of the study farms complied with the European averages. Interestingly, the farms with the highest biosecurity score showed the lowest overall prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) and <i>Actinobacillus</i> sp.; the circulation of well-studied pathogenic viruses, such as PRRSV, was correlated with overall lower biosecurity scores, a higher number of stillborn piglets, and cocirculation of porcine parvovirus type 7. Moreover, potential risk factors for lesser-known agents (e.g., porcine hemagglutinating and encephalomyelitis virus, porcine respiratory coronavirus, and porcine polyomavirus) could also be addressed. For the bacterial pathogen <i>Glaesserella</i> sp., a correlation with increased clinical signs was observed, whereas <i>Lactobacillus</i> sp. and <i>Moraxella</i> sp. are putative biomarkers for pig farms with better biosecurity scores. In conclusion, in-depth cross-correlation of (meta)data from new diagnostic platforms with biosecurity measures on pig farms may contribute to a better understanding of new actions in adapting biosecurity measures. This will not only contribute to improved animal welfare and economic productivity but also helping to address (new) zoonotic disease threats and potential treatments.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6205899","citationCount":"0","resultStr":"{\"title\":\"Cross-Correlation between Biosecurity Measures and the Detection of Viral and Bacterial Agents on German Farms with Respiratory Disease\",\"authors\":\"Julia Stadler, Kathrin Lillie-Jaschniski, Sophia Zwickl, Susanne Zoels, Sebastiaan Theuns, Mathias Ritzmann, Nick Vereecke\",\"doi\":\"10.1155/2024/6205899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Effective porcine health management relies majorly on diagnostic tests, vaccination, treatment strategies, and a proper biosecurity management plan. However, understanding the link between circulating microbes and biosecurity measures on a pig farm is not evident. Substantial progress has been made in recent years with the availability of new diagnostic tools (e.g., sequencing-based diagnostics) and extensive biosecurity management questionnaires. However, the interpretation and correlation of these results are hampered by the abundance of gained (meta)data. Therefore, we aimed to cross-correlate viral and bacterial pathogens with respiratory tropism detected by third-generation nanopore metagenomic sequencing with biosecurity measures assessed by Biocheck.UGent™. The study was conducted on 25 sow farms with attached nurseries in Germany with known respiratory distress. The biosecurity level of the study farms complied with the European averages. Interestingly, the farms with the highest biosecurity score showed the lowest overall prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) and <i>Actinobacillus</i> sp.; the circulation of well-studied pathogenic viruses, such as PRRSV, was correlated with overall lower biosecurity scores, a higher number of stillborn piglets, and cocirculation of porcine parvovirus type 7. Moreover, potential risk factors for lesser-known agents (e.g., porcine hemagglutinating and encephalomyelitis virus, porcine respiratory coronavirus, and porcine polyomavirus) could also be addressed. For the bacterial pathogen <i>Glaesserella</i> sp., a correlation with increased clinical signs was observed, whereas <i>Lactobacillus</i> sp. and <i>Moraxella</i> sp. are putative biomarkers for pig farms with better biosecurity scores. In conclusion, in-depth cross-correlation of (meta)data from new diagnostic platforms with biosecurity measures on pig farms may contribute to a better understanding of new actions in adapting biosecurity measures. This will not only contribute to improved animal welfare and economic productivity but also helping to address (new) zoonotic disease threats and potential treatments.</p>\\n </div>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6205899\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6205899\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6205899","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Cross-Correlation between Biosecurity Measures and the Detection of Viral and Bacterial Agents on German Farms with Respiratory Disease
Effective porcine health management relies majorly on diagnostic tests, vaccination, treatment strategies, and a proper biosecurity management plan. However, understanding the link between circulating microbes and biosecurity measures on a pig farm is not evident. Substantial progress has been made in recent years with the availability of new diagnostic tools (e.g., sequencing-based diagnostics) and extensive biosecurity management questionnaires. However, the interpretation and correlation of these results are hampered by the abundance of gained (meta)data. Therefore, we aimed to cross-correlate viral and bacterial pathogens with respiratory tropism detected by third-generation nanopore metagenomic sequencing with biosecurity measures assessed by Biocheck.UGent™. The study was conducted on 25 sow farms with attached nurseries in Germany with known respiratory distress. The biosecurity level of the study farms complied with the European averages. Interestingly, the farms with the highest biosecurity score showed the lowest overall prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) and Actinobacillus sp.; the circulation of well-studied pathogenic viruses, such as PRRSV, was correlated with overall lower biosecurity scores, a higher number of stillborn piglets, and cocirculation of porcine parvovirus type 7. Moreover, potential risk factors for lesser-known agents (e.g., porcine hemagglutinating and encephalomyelitis virus, porcine respiratory coronavirus, and porcine polyomavirus) could also be addressed. For the bacterial pathogen Glaesserella sp., a correlation with increased clinical signs was observed, whereas Lactobacillus sp. and Moraxella sp. are putative biomarkers for pig farms with better biosecurity scores. In conclusion, in-depth cross-correlation of (meta)data from new diagnostic platforms with biosecurity measures on pig farms may contribute to a better understanding of new actions in adapting biosecurity measures. This will not only contribute to improved animal welfare and economic productivity but also helping to address (new) zoonotic disease threats and potential treatments.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.