{"title":"在线尺寸拉姆齐数字:路径与 C4","authors":"Grzegorz Adamski, Małgorzata Bednarska-Bzdȩga","doi":"10.1016/j.disc.2024.114214","DOIUrl":null,"url":null,"abstract":"<div><p>Given two graphs <em>G</em> and <em>H</em>, a size Ramsey game is played on the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of <em>G</em> or a blue copy of <em>H</em> as soon as possible. The online (size) Ramsey number <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the number of rounds in the game provided Builder and Painter play optimally. We prove that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. Our proof for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span> is computer-assisted. The bound <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> solves also the “all cycles vs. <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>” game for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> – it implies that it takes Builder <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> rounds to force Painter to create a blue path on <em>n</em> vertices or any red cycle.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"347 12","pages":"Article 114214"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online size Ramsey numbers: Path vs C4\",\"authors\":\"Grzegorz Adamski, Małgorzata Bednarska-Bzdȩga\",\"doi\":\"10.1016/j.disc.2024.114214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given two graphs <em>G</em> and <em>H</em>, a size Ramsey game is played on the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of <em>G</em> or a blue copy of <em>H</em> as soon as possible. The online (size) Ramsey number <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the number of rounds in the game provided Builder and Painter play optimally. We prove that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. Our proof for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span> is computer-assisted. The bound <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> solves also the “all cycles vs. <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>” game for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> – it implies that it takes Builder <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> rounds to force Painter to create a blue path on <em>n</em> vertices or any red cycle.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"347 12\",\"pages\":\"Article 114214\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003455\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定两个图 G 和 H,在 KN 的边集上进行大小拉姆齐游戏。在每一轮中,"生成者 "选择一条边,"绘制者 "将其染成红色或蓝色。生成者的目标是迫使绘制者尽快创建 G 的红色副本或 H 的蓝色副本。在线拉姆齐数(大小)r˜(G,H) 是生成者和绘制者以最佳方式进行博弈的回合数。我们证明,在每 n≥8 时,r˜(C4,Pn)≤2n-2。这个上界与 J. Cyman、T. Dzido、J. Lapinskas 和 A. Lo 所得到的下界相吻合,因此我们得到 n≥8 时 r˜(C4,Pn)=2n-2。对于 n≤13 的证明由计算机辅助。当 n≥8 时,r˜(C4,Pn)≤2n-2 也能解决 "所有循环与 Pn "博弈--这意味着需要 Builder 2n-2 轮才能迫使 Painter 在 n 个顶点上创建一条蓝色路径或任何红色循环。
Given two graphs G and H, a size Ramsey game is played on the edge set of . In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of G or a blue copy of H as soon as possible. The online (size) Ramsey number is the number of rounds in the game provided Builder and Painter play optimally. We prove that for every . The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get for . Our proof for is computer-assisted. The bound solves also the “all cycles vs. ” game for – it implies that it takes Builder rounds to force Painter to create a blue path on n vertices or any red cycle.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.