在线尺寸拉姆齐数字:路径与 C4

IF 0.7 3区 数学 Q2 MATHEMATICS
Grzegorz Adamski, Małgorzata Bednarska-Bzdȩga
{"title":"在线尺寸拉姆齐数字:路径与 C4","authors":"Grzegorz Adamski,&nbsp;Małgorzata Bednarska-Bzdȩga","doi":"10.1016/j.disc.2024.114214","DOIUrl":null,"url":null,"abstract":"<div><p>Given two graphs <em>G</em> and <em>H</em>, a size Ramsey game is played on the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of <em>G</em> or a blue copy of <em>H</em> as soon as possible. The online (size) Ramsey number <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the number of rounds in the game provided Builder and Painter play optimally. We prove that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. Our proof for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span> is computer-assisted. The bound <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> solves also the “all cycles vs. <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>” game for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> – it implies that it takes Builder <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> rounds to force Painter to create a blue path on <em>n</em> vertices or any red cycle.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"347 12","pages":"Article 114214"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online size Ramsey numbers: Path vs C4\",\"authors\":\"Grzegorz Adamski,&nbsp;Małgorzata Bednarska-Bzdȩga\",\"doi\":\"10.1016/j.disc.2024.114214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given two graphs <em>G</em> and <em>H</em>, a size Ramsey game is played on the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of <em>G</em> or a blue copy of <em>H</em> as soon as possible. The online (size) Ramsey number <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the number of rounds in the game provided Builder and Painter play optimally. We prove that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. Our proof for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span> is computer-assisted. The bound <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> solves also the “all cycles vs. <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>” game for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> – it implies that it takes Builder <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> rounds to force Painter to create a blue path on <em>n</em> vertices or any red cycle.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"347 12\",\"pages\":\"Article 114214\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003455\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定两个图 G 和 H,在 KN 的边集上进行大小拉姆齐游戏。在每一轮中,"生成者 "选择一条边,"绘制者 "将其染成红色或蓝色。生成者的目标是迫使绘制者尽快创建 G 的红色副本或 H 的蓝色副本。在线拉姆齐数(大小)r˜(G,H) 是生成者和绘制者以最佳方式进行博弈的回合数。我们证明,在每 n≥8 时,r˜(C4,Pn)≤2n-2。这个上界与 J. Cyman、T. Dzido、J. Lapinskas 和 A. Lo 所得到的下界相吻合,因此我们得到 n≥8 时 r˜(C4,Pn)=2n-2。对于 n≤13 的证明由计算机辅助。当 n≥8 时,r˜(C4,Pn)≤2n-2 也能解决 "所有循环与 Pn "博弈--这意味着需要 Builder 2n-2 轮才能迫使 Painter 在 n 个顶点上创建一条蓝色路径或任何红色循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online size Ramsey numbers: Path vs C4

Given two graphs G and H, a size Ramsey game is played on the edge set of KN. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of G or a blue copy of H as soon as possible. The online (size) Ramsey number r˜(G,H) is the number of rounds in the game provided Builder and Painter play optimally. We prove that r˜(C4,Pn)2n2 for every n8. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get r˜(C4,Pn)=2n2 for n8. Our proof for n13 is computer-assisted. The bound r˜(C4,Pn)2n2 solves also the “all cycles vs. Pn” game for n8 – it implies that it takes Builder 2n2 rounds to force Painter to create a blue path on n vertices or any red cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信