Hui Li , Mingjiang Li , Jingzhi Rong , Tongye Wei , Kailing Sun , Yanhuai Ding , Gangtie Lei , Zhaohui Li
{"title":"一步合成锚定在泡沫镍上的 CoO 纳米阵列,作为锂硫电池的三维集流器","authors":"Hui Li , Mingjiang Li , Jingzhi Rong , Tongye Wei , Kailing Sun , Yanhuai Ding , Gangtie Lei , Zhaohui Li","doi":"10.1016/j.ssi.2024.116661","DOIUrl":null,"url":null,"abstract":"<div><p>Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li<sub>2</sub>S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm<sup>−2</sup> can deliver an initial capacity of 490 mAh g<sup>−1</sup> at 1C, and 306 mAh g<sup>−1</sup> after 500 cycles. When the sulfur loading is increased to 5.12 mg cm<sup>−2</sup>, the resultant cathode can achieve a capacity of 2.3 mAh cm<sup>−2</sup> at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116661"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries\",\"authors\":\"Hui Li , Mingjiang Li , Jingzhi Rong , Tongye Wei , Kailing Sun , Yanhuai Ding , Gangtie Lei , Zhaohui Li\",\"doi\":\"10.1016/j.ssi.2024.116661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li<sub>2</sub>S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm<sup>−2</sup> can deliver an initial capacity of 490 mAh g<sup>−1</sup> at 1C, and 306 mAh g<sup>−1</sup> after 500 cycles. When the sulfur loading is increased to 5.12 mg cm<sup>−2</sup>, the resultant cathode can achieve a capacity of 2.3 mAh cm<sup>−2</sup> at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"415 \",\"pages\":\"Article 116661\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002091\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002091","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries
Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li2S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm−2 can deliver an initial capacity of 490 mAh g−1 at 1C, and 306 mAh g−1 after 500 cycles. When the sulfur loading is increased to 5.12 mg cm−2, the resultant cathode can achieve a capacity of 2.3 mAh cm−2 at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.