从旋转状态推断金星地幔的粘度

IF 2.5 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yann Musseau , Gabriel Tobie , Caroline Dumoulin , Cédric Gillmann , Alexandre Revol , Emeline Bolmont
{"title":"从旋转状态推断金星地幔的粘度","authors":"Yann Musseau ,&nbsp;Gabriel Tobie ,&nbsp;Caroline Dumoulin ,&nbsp;Cédric Gillmann ,&nbsp;Alexandre Revol ,&nbsp;Emeline Bolmont","doi":"10.1016/j.icarus.2024.116245","DOIUrl":null,"url":null,"abstract":"<div><p>Venus’ retrograde rotation is the slowest of all planetary objects in the solar system. It is commonly admitted that such a rotation state results from the balance between the torques created by solid and atmospheric tides (Dobrovolskis and Ingersol, 1980; Correia and Laskar, 2001; Correia and Laskar, 2003a; Revol et al. 2023). The internal viscous friction associated with gravitational tides drives the planet into synchronization (i.e. deceleration to a tidally locked rotation) while the bulge due to atmospheric thermal tides tends to accelerate the planet out of this synchronization (Correia and Laskar, 2001; Leconte et al., 2015). The purpose of this work is first to provide an estimate of the viscosity of Venus’ mantle explaining the current balance with atmospheric forcing. A second goal is to quantify the impact of the internal structure and its past evolution on the rotation history of Venus.</p><p>Using atmospheric pressure simulations, we first provide an estimate of the atmospheric thermal torque value contrasting with previous estimates (Leconte et al., 2015). Computing the viscoelastic response of the interior to gravitational tides and to atmospheric loading (Dumoulin et al., 2017; Kervazo et al., 2021), we show that the current viscosity of Venus’ lower mantle must range between 2 × 10<sup>20</sup> Pa s and 6 × 10<sup>21</sup> Pa s to explain a rotation in equilibrium. We then investigate the possible past evolution of Venus’ rotation by considering simple viscosity and thermal evolution paths. We show that in absence of additional dissipation processes, viscous friction cannot slow down Venus’ rotation to its current state from an initial rotation period shorter than 1 day.</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"422 ","pages":"Article 116245"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The viscosity of Venus’ mantle inferred from its rotational state\",\"authors\":\"Yann Musseau ,&nbsp;Gabriel Tobie ,&nbsp;Caroline Dumoulin ,&nbsp;Cédric Gillmann ,&nbsp;Alexandre Revol ,&nbsp;Emeline Bolmont\",\"doi\":\"10.1016/j.icarus.2024.116245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Venus’ retrograde rotation is the slowest of all planetary objects in the solar system. It is commonly admitted that such a rotation state results from the balance between the torques created by solid and atmospheric tides (Dobrovolskis and Ingersol, 1980; Correia and Laskar, 2001; Correia and Laskar, 2003a; Revol et al. 2023). The internal viscous friction associated with gravitational tides drives the planet into synchronization (i.e. deceleration to a tidally locked rotation) while the bulge due to atmospheric thermal tides tends to accelerate the planet out of this synchronization (Correia and Laskar, 2001; Leconte et al., 2015). The purpose of this work is first to provide an estimate of the viscosity of Venus’ mantle explaining the current balance with atmospheric forcing. A second goal is to quantify the impact of the internal structure and its past evolution on the rotation history of Venus.</p><p>Using atmospheric pressure simulations, we first provide an estimate of the atmospheric thermal torque value contrasting with previous estimates (Leconte et al., 2015). Computing the viscoelastic response of the interior to gravitational tides and to atmospheric loading (Dumoulin et al., 2017; Kervazo et al., 2021), we show that the current viscosity of Venus’ lower mantle must range between 2 × 10<sup>20</sup> Pa s and 6 × 10<sup>21</sup> Pa s to explain a rotation in equilibrium. We then investigate the possible past evolution of Venus’ rotation by considering simple viscosity and thermal evolution paths. We show that in absence of additional dissipation processes, viscous friction cannot slow down Venus’ rotation to its current state from an initial rotation period shorter than 1 day.</p></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"422 \",\"pages\":\"Article 116245\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524003051\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003051","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

金星的逆行自转是太阳系所有行星中最慢的。人们普遍认为,这种自转状态是固体潮汐和大气潮汐所产生的扭矩平衡的结果(Dobrovolskis 和 Ingersol,1980 年;Correia 和 Laskar,2001 年;Correia 和 Laskar,2003a;Revol 等,2023 年)。与引力潮汐相关的内部粘性摩擦会促使行星进入同步状态(即减速至潮汐锁定自转),而大气热潮汐导致的隆起则会加速行星脱离同步状态(Correia 和 Laskar,2001 年;Leconte 等人,2015 年)。这项工作的目的首先是提供金星地幔粘度的估计值,解释当前与大气强迫的平衡。第二个目标是量化内部结构及其过去演变对金星自转历史的影响。利用大气压力模拟,我们首先提供了大气热力矩值的估计值,与之前的估计值形成对比(Leconte 等人,2015 年)。通过计算内部对重力潮汐和大气负载的粘弹性响应(Dumoulin等人,2017年;Kervazo等人,2021年),我们表明金星下地幔目前的粘度必须介于2×1020 Pa s和6×1021 Pa s之间,才能解释处于平衡状态的自转。然后,我们通过考虑简单的粘度和热演化路径,研究了金星自转过去可能的演化过程。我们的研究表明,在没有额外耗散过程的情况下,粘性摩擦无法将金星的自转速度从最初的自转周期短于 1 天减慢到目前的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The viscosity of Venus’ mantle inferred from its rotational state

Venus’ retrograde rotation is the slowest of all planetary objects in the solar system. It is commonly admitted that such a rotation state results from the balance between the torques created by solid and atmospheric tides (Dobrovolskis and Ingersol, 1980; Correia and Laskar, 2001; Correia and Laskar, 2003a; Revol et al. 2023). The internal viscous friction associated with gravitational tides drives the planet into synchronization (i.e. deceleration to a tidally locked rotation) while the bulge due to atmospheric thermal tides tends to accelerate the planet out of this synchronization (Correia and Laskar, 2001; Leconte et al., 2015). The purpose of this work is first to provide an estimate of the viscosity of Venus’ mantle explaining the current balance with atmospheric forcing. A second goal is to quantify the impact of the internal structure and its past evolution on the rotation history of Venus.

Using atmospheric pressure simulations, we first provide an estimate of the atmospheric thermal torque value contrasting with previous estimates (Leconte et al., 2015). Computing the viscoelastic response of the interior to gravitational tides and to atmospheric loading (Dumoulin et al., 2017; Kervazo et al., 2021), we show that the current viscosity of Venus’ lower mantle must range between 2 × 1020 Pa s and 6 × 1021 Pa s to explain a rotation in equilibrium. We then investigate the possible past evolution of Venus’ rotation by considering simple viscosity and thermal evolution paths. We show that in absence of additional dissipation processes, viscous friction cannot slow down Venus’ rotation to its current state from an initial rotation period shorter than 1 day.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信