{"title":"滑移转向无人地面飞行器的路径跟踪和能效协调控制策略","authors":"Siyuan Guo, Zhi Ning, Ming Lv","doi":"10.1016/j.conengprac.2024.106048","DOIUrl":null,"url":null,"abstract":"<div><p>The skid steering unmanned ground vehicle (SUGV) plays an important role in extremely harsh environments. Improving the autonomous control capability and energy efficiency of SUGV is urgently needed. This article presents a skid steering-based path tracking control strategy. In the upper controller, an improved model-free sliding mode controller (APMS) is used to calculate the yaw moment for tracking control. On the lower controller, the Snow Ablation Optimizer (SAO) is used to distribute the output torque of the drive motors, taking longitudinal force, yaw moment and energy consumption into account. Finally, the designed controller is validated through simulation under different operating conditions. The results show that the proposed coordination controller achieves good control performance, increases energy efficiency and at the same time ensures tracking accuracy.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106048"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path tracking and energy efficiency coordination control strategy for skid-steering unmanned ground vehicle\",\"authors\":\"Siyuan Guo, Zhi Ning, Ming Lv\",\"doi\":\"10.1016/j.conengprac.2024.106048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The skid steering unmanned ground vehicle (SUGV) plays an important role in extremely harsh environments. Improving the autonomous control capability and energy efficiency of SUGV is urgently needed. This article presents a skid steering-based path tracking control strategy. In the upper controller, an improved model-free sliding mode controller (APMS) is used to calculate the yaw moment for tracking control. On the lower controller, the Snow Ablation Optimizer (SAO) is used to distribute the output torque of the drive motors, taking longitudinal force, yaw moment and energy consumption into account. Finally, the designed controller is validated through simulation under different operating conditions. The results show that the proposed coordination controller achieves good control performance, increases energy efficiency and at the same time ensures tracking accuracy.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"152 \",\"pages\":\"Article 106048\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002077\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002077","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Path tracking and energy efficiency coordination control strategy for skid-steering unmanned ground vehicle
The skid steering unmanned ground vehicle (SUGV) plays an important role in extremely harsh environments. Improving the autonomous control capability and energy efficiency of SUGV is urgently needed. This article presents a skid steering-based path tracking control strategy. In the upper controller, an improved model-free sliding mode controller (APMS) is used to calculate the yaw moment for tracking control. On the lower controller, the Snow Ablation Optimizer (SAO) is used to distribute the output torque of the drive motors, taking longitudinal force, yaw moment and energy consumption into account. Finally, the designed controller is validated through simulation under different operating conditions. The results show that the proposed coordination controller achieves good control performance, increases energy efficiency and at the same time ensures tracking accuracy.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.