从隐式大涡流模拟角度看周期性山丘上的流动

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Laura Prieto Saavedra, Catherine E. Niamh Radburn, Audrey Collard-Daigneault, Bruno Blais
{"title":"从隐式大涡流模拟角度看周期性山丘上的流动","authors":"Laura Prieto Saavedra,&nbsp;Catherine E. Niamh Radburn,&nbsp;Audrey Collard-Daigneault,&nbsp;Bruno Blais","doi":"10.1016/j.compfluid.2024.106390","DOIUrl":null,"url":null,"abstract":"<div><p>The periodic hills simulation case is a well-established benchmark for computational fluid dynamics solvers due to its complex features derived from the separation of a turbulent flow from a curved surface. We study the case with the open-source implicit large-eddy simulation (ILES) software Lethe. Lethe solves the incompressible Navier–Stokes equations by applying a stabilized continuous finite element discretization. The results are validated by comparison to experimental and computational data available in the literature for Re = 5600. We study the effect of the time step, averaging time, and global mesh refinement. The ILES approach shows good accuracy for average velocities and Reynolds stresses using less degrees of freedom than the reference numerical solution. The time step has a greater effect on the accuracy when using coarser meshes, while for fine meshes the results are rapidly time-step independent when using an implicit time-stepping approach. A good prediction of the reattachment point is obtained with several meshes and this value approaches the experimental benchmark value as the mesh is refined. We also run simulations at Reynolds equal to <span><math><mrow><mn>10</mn><mspace></mspace><mn>600</mn></mrow></math></span> and <span><math><mrow><mn>37</mn><mspace></mspace><mn>000</mn></mrow></math></span> and observe promising results for the ILES approach.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"283 ","pages":"Article 106390"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024002226/pdfft?md5=953ff16e45e3b2f6a10ba4d75de80d6c&pid=1-s2.0-S0045793024002226-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An implicit large-eddy simulation perspective on the flow over periodic hills\",\"authors\":\"Laura Prieto Saavedra,&nbsp;Catherine E. Niamh Radburn,&nbsp;Audrey Collard-Daigneault,&nbsp;Bruno Blais\",\"doi\":\"10.1016/j.compfluid.2024.106390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The periodic hills simulation case is a well-established benchmark for computational fluid dynamics solvers due to its complex features derived from the separation of a turbulent flow from a curved surface. We study the case with the open-source implicit large-eddy simulation (ILES) software Lethe. Lethe solves the incompressible Navier–Stokes equations by applying a stabilized continuous finite element discretization. The results are validated by comparison to experimental and computational data available in the literature for Re = 5600. We study the effect of the time step, averaging time, and global mesh refinement. The ILES approach shows good accuracy for average velocities and Reynolds stresses using less degrees of freedom than the reference numerical solution. The time step has a greater effect on the accuracy when using coarser meshes, while for fine meshes the results are rapidly time-step independent when using an implicit time-stepping approach. A good prediction of the reattachment point is obtained with several meshes and this value approaches the experimental benchmark value as the mesh is refined. We also run simulations at Reynolds equal to <span><math><mrow><mn>10</mn><mspace></mspace><mn>600</mn></mrow></math></span> and <span><math><mrow><mn>37</mn><mspace></mspace><mn>000</mn></mrow></math></span> and observe promising results for the ILES approach.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"283 \",\"pages\":\"Article 106390\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002226/pdfft?md5=953ff16e45e3b2f6a10ba4d75de80d6c&pid=1-s2.0-S0045793024002226-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002226\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

周期性丘陵模拟案例是计算流体力学求解器的一个成熟基准,因为其复杂特征来自于湍流与曲面的分离。我们使用开源隐式大涡度模拟(ILES)软件 Lethe 对该案例进行了研究。Lethe 采用稳定的连续有限元离散化方法求解不可压缩的纳维-斯托克斯方程。通过与文献中 Re = 5600 条件下的实验和计算数据进行比较,验证了结果。我们研究了时间步长、平均时间和全局网格细化的影响。与参考数值解法相比,ILES 方法使用较少的自由度就能获得较高的平均速度和雷诺应力精度。在使用较粗网格时,时间步长对精度的影响更大,而在使用隐式时间步长方法时,对于细网格,结果与时间步长迅速无关。使用多个网格可以很好地预测重新附着点,并且随着网格的细化,该值会接近实验基准值。我们还在雷诺数等于 10600 和 37000 的条件下进行了模拟,观察到 ILES 方法取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An implicit large-eddy simulation perspective on the flow over periodic hills

The periodic hills simulation case is a well-established benchmark for computational fluid dynamics solvers due to its complex features derived from the separation of a turbulent flow from a curved surface. We study the case with the open-source implicit large-eddy simulation (ILES) software Lethe. Lethe solves the incompressible Navier–Stokes equations by applying a stabilized continuous finite element discretization. The results are validated by comparison to experimental and computational data available in the literature for Re = 5600. We study the effect of the time step, averaging time, and global mesh refinement. The ILES approach shows good accuracy for average velocities and Reynolds stresses using less degrees of freedom than the reference numerical solution. The time step has a greater effect on the accuracy when using coarser meshes, while for fine meshes the results are rapidly time-step independent when using an implicit time-stepping approach. A good prediction of the reattachment point is obtained with several meshes and this value approaches the experimental benchmark value as the mesh is refined. We also run simulations at Reynolds equal to 10600 and 37000 and observe promising results for the ILES approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信