薄膜弹塑性行为对圆形屈曲结构的影响

IF 3.4 3区 工程技术 Q1 MECHANICS
K. Meng , G. Parry , M.A. Hurier , C. Tromas , C. Coupeau
{"title":"薄膜弹塑性行为对圆形屈曲结构的影响","authors":"K. Meng ,&nbsp;G. Parry ,&nbsp;M.A. Hurier ,&nbsp;C. Tromas ,&nbsp;C. Coupeau","doi":"10.1016/j.ijsolstr.2024.113032","DOIUrl":null,"url":null,"abstract":"<div><p>We report on circular buckles experimentally observed by optical and atomic force microscopy on gold ductile thin films deposited by physical vapor deposition on silicon wafers. It is shown that, whatever the radius blister dimensions, their maximum deflections are higher than those expected by the elastic theory. It suggests that plastic events may take place in the film, impacting on the blister morphology as a result. Based on nanoindentation experiments carried out on our gold films, a proper plastic hardening law has been determined by calculations using the finite elements method. The influence of this elasto-plastic behavior on the buckled circular profiles has been then numerically studied, compared to the experimental observations and discussed.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"304 ","pages":"Article 113032"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of elasto-plastic behavior of thin films on circular buckling structures\",\"authors\":\"K. Meng ,&nbsp;G. Parry ,&nbsp;M.A. Hurier ,&nbsp;C. Tromas ,&nbsp;C. Coupeau\",\"doi\":\"10.1016/j.ijsolstr.2024.113032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report on circular buckles experimentally observed by optical and atomic force microscopy on gold ductile thin films deposited by physical vapor deposition on silicon wafers. It is shown that, whatever the radius blister dimensions, their maximum deflections are higher than those expected by the elastic theory. It suggests that plastic events may take place in the film, impacting on the blister morphology as a result. Based on nanoindentation experiments carried out on our gold films, a proper plastic hardening law has been determined by calculations using the finite elements method. The influence of this elasto-plastic behavior on the buckled circular profiles has been then numerically studied, compared to the experimental observations and discussed.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"304 \",\"pages\":\"Article 113032\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003913\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003913","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了在硅晶片上通过物理气相沉积法沉积的金延展性薄膜上用光学和原子力显微镜实验观察到的圆形扣。实验表明,无论半径水泡的尺寸如何,其最大偏转都高于弹性理论的预期。这表明薄膜中可能存在塑性事件,从而对水泡形态产生影响。根据在我们的金薄膜上进行的纳米压痕实验,通过使用有限元方法进行计算,确定了适当的塑性硬化规律。然后对这种弹塑性行为对弯曲圆形轮廓的影响进行了数值研究,并与实验观察结果进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of elasto-plastic behavior of thin films on circular buckling structures

We report on circular buckles experimentally observed by optical and atomic force microscopy on gold ductile thin films deposited by physical vapor deposition on silicon wafers. It is shown that, whatever the radius blister dimensions, their maximum deflections are higher than those expected by the elastic theory. It suggests that plastic events may take place in the film, impacting on the blister morphology as a result. Based on nanoindentation experiments carried out on our gold films, a proper plastic hardening law has been determined by calculations using the finite elements method. The influence of this elasto-plastic behavior on the buckled circular profiles has been then numerically studied, compared to the experimental observations and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信