{"title":"有边界层的可压缩平面 MHD 系统的剪切粘度消失极限","authors":"Huanyao Wen , Xinhua Zhao","doi":"10.1016/j.jde.2024.08.031","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the study of the vanishing shear viscosity limit and strong boundary layer problem for the compressible, viscous, and heat-conducting planar MHD equations. The main aim is to obtain a sharp convergence rate which is usually connected to the boundary layer thickness. However, The convergence rate would be possibly slowed down due to the presence of the strong boundary layer effect and the interactions among the magnetic field, temperature, and fluids through not only the velocity equations but also the strongly nonlinear terms in the temperature equation. Our main strategy is to construct some new functions via asymptotic matching method which can cancel some quantities decaying in a lower speed. It leads to a sharp <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> convergence rate as the shear viscosity vanishes for global-in-time solution with arbitrarily large initial data.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing shear viscosity limit for the compressible planar MHD system with boundary layer\",\"authors\":\"Huanyao Wen , Xinhua Zhao\",\"doi\":\"10.1016/j.jde.2024.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to the study of the vanishing shear viscosity limit and strong boundary layer problem for the compressible, viscous, and heat-conducting planar MHD equations. The main aim is to obtain a sharp convergence rate which is usually connected to the boundary layer thickness. However, The convergence rate would be possibly slowed down due to the presence of the strong boundary layer effect and the interactions among the magnetic field, temperature, and fluids through not only the velocity equations but also the strongly nonlinear terms in the temperature equation. Our main strategy is to construct some new functions via asymptotic matching method which can cancel some quantities decaying in a lower speed. It leads to a sharp <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> convergence rate as the shear viscosity vanishes for global-in-time solution with arbitrarily large initial data.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005138\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005138","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Vanishing shear viscosity limit for the compressible planar MHD system with boundary layer
This paper is devoted to the study of the vanishing shear viscosity limit and strong boundary layer problem for the compressible, viscous, and heat-conducting planar MHD equations. The main aim is to obtain a sharp convergence rate which is usually connected to the boundary layer thickness. However, The convergence rate would be possibly slowed down due to the presence of the strong boundary layer effect and the interactions among the magnetic field, temperature, and fluids through not only the velocity equations but also the strongly nonlinear terms in the temperature equation. Our main strategy is to construct some new functions via asymptotic matching method which can cancel some quantities decaying in a lower speed. It leads to a sharp convergence rate as the shear viscosity vanishes for global-in-time solution with arbitrarily large initial data.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics