Stavros X. Drakopoulos , Jiaen Wu , Shawn M. Maguire , Sneha Srinivasan , Katelyn Randazzo , Emily C. Davidson , Rodney D. Priestley
{"title":"聚合物纳米复合材料:界面特性与电容储能","authors":"Stavros X. Drakopoulos , Jiaen Wu , Shawn M. Maguire , Sneha Srinivasan , Katelyn Randazzo , Emily C. Davidson , Rodney D. Priestley","doi":"10.1016/j.progpolymsci.2024.101870","DOIUrl":null,"url":null,"abstract":"<div><p>An in-depth review is presented on the interfacial phenomena of polymer nanocomposites and the role of the interface/interphase in capacitive energy storage. The interaction between polymer chains and nanofillers upon filler dispersion and glass transition temperature are discussed through the lens of the adsorbed layer or polymer-grafted nanoparticles. Moreover, fundamentals of dielectric physics are discussed regarding charge transport and charge entrapment on the interface, yielding the phenomenon of interfacial polarization. Therefore, the aim of this review is to inform the readers on the importance of the interface and highlight that both polymer chain dynamics and charge transport points of view are pivotal in the understanding of modern polymer nanodielectrics.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"156 ","pages":"Article 101870"},"PeriodicalIF":26.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer nanocomposites: Interfacial properties and capacitive energy storage\",\"authors\":\"Stavros X. Drakopoulos , Jiaen Wu , Shawn M. Maguire , Sneha Srinivasan , Katelyn Randazzo , Emily C. Davidson , Rodney D. Priestley\",\"doi\":\"10.1016/j.progpolymsci.2024.101870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An in-depth review is presented on the interfacial phenomena of polymer nanocomposites and the role of the interface/interphase in capacitive energy storage. The interaction between polymer chains and nanofillers upon filler dispersion and glass transition temperature are discussed through the lens of the adsorbed layer or polymer-grafted nanoparticles. Moreover, fundamentals of dielectric physics are discussed regarding charge transport and charge entrapment on the interface, yielding the phenomenon of interfacial polarization. Therefore, the aim of this review is to inform the readers on the importance of the interface and highlight that both polymer chain dynamics and charge transport points of view are pivotal in the understanding of modern polymer nanodielectrics.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"156 \",\"pages\":\"Article 101870\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007967002400087X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967002400087X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Polymer nanocomposites: Interfacial properties and capacitive energy storage
An in-depth review is presented on the interfacial phenomena of polymer nanocomposites and the role of the interface/interphase in capacitive energy storage. The interaction between polymer chains and nanofillers upon filler dispersion and glass transition temperature are discussed through the lens of the adsorbed layer or polymer-grafted nanoparticles. Moreover, fundamentals of dielectric physics are discussed regarding charge transport and charge entrapment on the interface, yielding the phenomenon of interfacial polarization. Therefore, the aim of this review is to inform the readers on the importance of the interface and highlight that both polymer chain dynamics and charge transport points of view are pivotal in the understanding of modern polymer nanodielectrics.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.