Zhicong Lin , Jing Liu , Suijie Wang , Wenston J.T. Zang
{"title":"弱递增树的更多双射组合学","authors":"Zhicong Lin , Jing Liu , Suijie Wang , Wenston J.T. Zang","doi":"10.1016/j.aam.2024.102755","DOIUrl":null,"url":null,"abstract":"<div><p>As a unification of increasing trees and plane trees, the weakly increasing trees labeled by a multiset was introduced by Lin–Ma–Ma–Zhou (2021). Various intriguing connections and bijections for weakly increasing trees have already been found and the purpose of this paper is to present yet more bijective combinatorics on this unified object. Two of our main contributions are</p><ul><li><span>•</span><span><p>extension of an equidistribution result on plane trees due to Eu–Seo–Shin (2017), regarding levels and degrees of nodes, to weakly increasing trees;</p></span></li><li><span>•</span><span><p>a new interpretation of the multiset Schett polynomials in terms of odd left/right chains on weakly increasing binary trees.</p></span></li></ul> Interesting consequences are discussed, including new tree interpretations for the Jacobi elliptic functions and Euler numbers. Relevant enumerative results are also presented, involving recurrence relations, exponential generating functions and context-free grammars.</div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More bijective combinatorics of weakly increasing trees\",\"authors\":\"Zhicong Lin , Jing Liu , Suijie Wang , Wenston J.T. Zang\",\"doi\":\"10.1016/j.aam.2024.102755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a unification of increasing trees and plane trees, the weakly increasing trees labeled by a multiset was introduced by Lin–Ma–Ma–Zhou (2021). Various intriguing connections and bijections for weakly increasing trees have already been found and the purpose of this paper is to present yet more bijective combinatorics on this unified object. Two of our main contributions are</p><ul><li><span>•</span><span><p>extension of an equidistribution result on plane trees due to Eu–Seo–Shin (2017), regarding levels and degrees of nodes, to weakly increasing trees;</p></span></li><li><span>•</span><span><p>a new interpretation of the multiset Schett polynomials in terms of odd left/right chains on weakly increasing binary trees.</p></span></li></ul> Interesting consequences are discussed, including new tree interpretations for the Jacobi elliptic functions and Euler numbers. Relevant enumerative results are also presented, involving recurrence relations, exponential generating functions and context-free grammars.</div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000873\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000873","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
More bijective combinatorics of weakly increasing trees
As a unification of increasing trees and plane trees, the weakly increasing trees labeled by a multiset was introduced by Lin–Ma–Ma–Zhou (2021). Various intriguing connections and bijections for weakly increasing trees have already been found and the purpose of this paper is to present yet more bijective combinatorics on this unified object. Two of our main contributions are
•
extension of an equidistribution result on plane trees due to Eu–Seo–Shin (2017), regarding levels and degrees of nodes, to weakly increasing trees;
•
a new interpretation of the multiset Schett polynomials in terms of odd left/right chains on weakly increasing binary trees.
Interesting consequences are discussed, including new tree interpretations for the Jacobi elliptic functions and Euler numbers. Relevant enumerative results are also presented, involving recurrence relations, exponential generating functions and context-free grammars.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.