无斜率选择的分子束外延模型的无条件能量稳定高阶 BDF 方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuanyuan Kang , Jindi Wang , Yin Yang
{"title":"无斜率选择的分子束外延模型的无条件能量稳定高阶 BDF 方案","authors":"Yuanyuan Kang ,&nbsp;Jindi Wang ,&nbsp;Yin Yang","doi":"10.1016/j.apnum.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a class of k-order <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> backward differentiation formulas (BDF-k) for the molecular beam epitaxial (MBE) model without slope selection. Convex splitting technique along with k-th order Douglas-Dupont regularization term <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>k</mi></mrow></msub></math></span> represents a truncated BDF-k formula) is added to the numerical schemes to ensure unconditional energy stability. The stabilized convex splitting BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> methods are unique solvable unconditionally. Then the modified discrete energy dissipation laws are established by using the discrete gradient structures of BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> formulas and processing k-th order explicit extrapolations of the concave term. In addition, based on the discrete energy technique, the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm stability and convergence of the stabilized BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> schemes are obtained by means of the discrete orthogonal convolution kernels and the convolution type Young inequalities. Numerical results are carried out to verify our theory and illustrate the validity of the proposed schemes.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally energy stable high-order BDF schemes for the molecular beam epitaxial model without slope selection\",\"authors\":\"Yuanyuan Kang ,&nbsp;Jindi Wang ,&nbsp;Yin Yang\",\"doi\":\"10.1016/j.apnum.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a class of k-order <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> backward differentiation formulas (BDF-k) for the molecular beam epitaxial (MBE) model without slope selection. Convex splitting technique along with k-th order Douglas-Dupont regularization term <span><math><msubsup><mrow><mi>τ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msubsup><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><msub><mrow><munder><mrow><mi>D</mi></mrow><mo>_</mo></munder></mrow><mrow><mi>k</mi></mrow></msub></math></span> represents a truncated BDF-k formula) is added to the numerical schemes to ensure unconditional energy stability. The stabilized convex splitting BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> methods are unique solvable unconditionally. Then the modified discrete energy dissipation laws are established by using the discrete gradient structures of BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> formulas and processing k-th order explicit extrapolations of the concave term. In addition, based on the discrete energy technique, the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm stability and convergence of the stabilized BDF-k <span><math><mo>(</mo><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>5</mn><mo>)</mo></math></span> schemes are obtained by means of the discrete orthogonal convolution kernels and the convolution type Young inequalities. Numerical results are carried out to verify our theory and illustrate the validity of the proposed schemes.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对无斜率选择的分子束外延(MBE)模型,研究了一类 k 阶(3≤k≤5)反向微分公式(BDF-k)。为确保无条件的能量稳定性,在数值方案中加入了凸分裂技术和 k 阶道格拉斯-杜邦正则化项 τnk(-Δ)kD_kjn (D_k 表示截断的 BDF-k 公式)。稳定的凸分裂 BDF-k (3≤k≤5) 方法是无条件唯一可解的。然后,利用 BDF-k (3≤k≤5) 公式的离散梯度结构并处理凹项的 k 阶显式外推,建立了修正的离散耗能定律。此外,基于离散能量技术,通过离散正交卷积核和卷积型扬氏不等式,获得了稳定 BDF-k (3≤k≤5) 方案的 L2 准则稳定性和收敛性。数值结果验证了我们的理论,并说明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally energy stable high-order BDF schemes for the molecular beam epitaxial model without slope selection

In this paper, we consider a class of k-order (3k5) backward differentiation formulas (BDF-k) for the molecular beam epitaxial (MBE) model without slope selection. Convex splitting technique along with k-th order Douglas-Dupont regularization term τnk(Δ)kD_kϕn (D_k represents a truncated BDF-k formula) is added to the numerical schemes to ensure unconditional energy stability. The stabilized convex splitting BDF-k (3k5) methods are unique solvable unconditionally. Then the modified discrete energy dissipation laws are established by using the discrete gradient structures of BDF-k (3k5) formulas and processing k-th order explicit extrapolations of the concave term. In addition, based on the discrete energy technique, the L2 norm stability and convergence of the stabilized BDF-k (3k5) schemes are obtained by means of the discrete orthogonal convolution kernels and the convolution type Young inequalities. Numerical results are carried out to verify our theory and illustrate the validity of the proposed schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信