具有切向边界条件的金兹堡-兰道函数的Γ-收敛性

IF 1.7 2区 数学 Q1 MATHEMATICS
Stan Alama, Lia Bronsard, Andrew Colinet
{"title":"具有切向边界条件的金兹堡-兰道函数的Γ-收敛性","authors":"Stan Alama,&nbsp;Lia Bronsard,&nbsp;Andrew Colinet","doi":"10.1016/j.jfa.2024.110621","DOIUrl":null,"url":null,"abstract":"<div><p>A classical result in the study of Ginzburg-Landau equations is that, for Dirichlet or Neumann boundary conditions, if a sequence of functions has energy uniformly bounded on a logarithmic scale then we can find a subsequence whose Jacobians are convergent in suitable dual spaces and whose renormalized energy is at least the sum of absolute degrees of vortices. However, the corresponding question for the case of tangential or normal boundary conditions has not been considered. In addition, the question of convergence of up to the boundary is not very well understood. Here, we consider these questions for a bounded, connected, open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Γ-convergence of the Ginzburg-Landau functional with tangential boundary conditions\",\"authors\":\"Stan Alama,&nbsp;Lia Bronsard,&nbsp;Andrew Colinet\",\"doi\":\"10.1016/j.jfa.2024.110621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A classical result in the study of Ginzburg-Landau equations is that, for Dirichlet or Neumann boundary conditions, if a sequence of functions has energy uniformly bounded on a logarithmic scale then we can find a subsequence whose Jacobians are convergent in suitable dual spaces and whose renormalized energy is at least the sum of absolute degrees of vortices. However, the corresponding question for the case of tangential or normal boundary conditions has not been considered. In addition, the question of convergence of up to the boundary is not very well understood. Here, we consider these questions for a bounded, connected, open set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003094\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

金兹堡-朗道方程研究中的一个经典结果是,对于狄利克特或诺伊曼边界条件,如果函数序列的能量在对数尺度上均匀有界,那么我们可以找到一个子序列,其雅各布在合适的对偶空间中收敛,其重正化能量至少是涡旋的绝对度之和。然而,切向或法向边界条件下的相应问题尚未得到考虑。此外,关于收敛到边界的问题也没有得到很好的理解。在此,我们将针对 R2 中边界为 C2,1 的有界、连通的开放集来考虑这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Γ-convergence of the Ginzburg-Landau functional with tangential boundary conditions

A classical result in the study of Ginzburg-Landau equations is that, for Dirichlet or Neumann boundary conditions, if a sequence of functions has energy uniformly bounded on a logarithmic scale then we can find a subsequence whose Jacobians are convergent in suitable dual spaces and whose renormalized energy is at least the sum of absolute degrees of vortices. However, the corresponding question for the case of tangential or normal boundary conditions has not been considered. In addition, the question of convergence of up to the boundary is not very well understood. Here, we consider these questions for a bounded, connected, open set of R2 with C2,1 boundary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信