Minghui Qian , Mengchun Zhao , Jianliang Yang , Guancan Yang , Jiayuan Xu , Xusen Cheng
{"title":"企业技术合作的新方法:通过技术相似性和互补性推荐研发合作伙伴","authors":"Minghui Qian , Mengchun Zhao , Jianliang Yang , Guancan Yang , Jiayuan Xu , Xusen Cheng","doi":"10.1016/j.joi.2024.101571","DOIUrl":null,"url":null,"abstract":"<div><p>Choosing the right partner is a key factor in the success of enterprise R&D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&D partners.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 4","pages":"Article 101571"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to enterprise technical collaboration: Recommending R&D partners through technological similarity and complementarity\",\"authors\":\"Minghui Qian , Mengchun Zhao , Jianliang Yang , Guancan Yang , Jiayuan Xu , Xusen Cheng\",\"doi\":\"10.1016/j.joi.2024.101571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Choosing the right partner is a key factor in the success of enterprise R&D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&D partners.</p></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":\"18 4\",\"pages\":\"Article 101571\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175115772400083X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175115772400083X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel approach to enterprise technical collaboration: Recommending R&D partners through technological similarity and complementarity
Choosing the right partner is a key factor in the success of enterprise R&D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&D partners.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.