使用边际因果先验知识的基于约束的新型结构学习算法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yifan Yu, Lei Hou, Xinhui Liu, Sijia Wu, Hongkai Li, Fuzhong Xue
{"title":"使用边际因果先验知识的基于约束的新型结构学习算法。","authors":"Yifan Yu, Lei Hou, Xinhui Liu, Sijia Wu, Hongkai Li, Fuzhong Xue","doi":"10.1038/s41598-024-68379-7","DOIUrl":null,"url":null,"abstract":"<p><p>Causal discovery with prior knowledge is important for improving performance. We consider the incorporation of marginal causal relations, which correspond to the presence or absence of directed paths in a causal model. We propose the Marginal Prior Causal Knowledge PC (MPPC) algorithm to incorporate marginal causal relations into a constraint-based structure learning algorithm. We provide the theorems of conditional independence properties by combining observational data and marginal causal relations. We compare the MPPC algorithm with other structure learning methods in both simulation studies and real-world networks. The results indicate that, compare with other constraint-based structure learning methods, MPPC algorithm can incorporate marginal causal relations and is more effective and more efficient.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"19279"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335901/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel constraint-based structure learning algorithm using marginal causal prior knowledge.\",\"authors\":\"Yifan Yu, Lei Hou, Xinhui Liu, Sijia Wu, Hongkai Li, Fuzhong Xue\",\"doi\":\"10.1038/s41598-024-68379-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Causal discovery with prior knowledge is important for improving performance. We consider the incorporation of marginal causal relations, which correspond to the presence or absence of directed paths in a causal model. We propose the Marginal Prior Causal Knowledge PC (MPPC) algorithm to incorporate marginal causal relations into a constraint-based structure learning algorithm. We provide the theorems of conditional independence properties by combining observational data and marginal causal relations. We compare the MPPC algorithm with other structure learning methods in both simulation studies and real-world networks. The results indicate that, compare with other constraint-based structure learning methods, MPPC algorithm can incorporate marginal causal relations and is more effective and more efficient.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"19279\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-68379-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-68379-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用先验知识发现因果关系对提高性能非常重要。我们考虑了边际因果关系的纳入问题,这种关系与因果模型中有无有向路径相对应。我们提出了边际先验因果知识 PC(MPPC)算法,将边际因果关系纳入基于约束的结构学习算法。我们通过结合观测数据和边际因果关系,提供了条件独立性属性定理。我们在模拟研究和实际网络中将 MPPC 算法与其他结构学习方法进行了比较。结果表明,与其他基于约束的结构学习方法相比,MPPC 算法能够结合边际因果关系,并且更有效、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel constraint-based structure learning algorithm using marginal causal prior knowledge.

A novel constraint-based structure learning algorithm using marginal causal prior knowledge.

A novel constraint-based structure learning algorithm using marginal causal prior knowledge.

A novel constraint-based structure learning algorithm using marginal causal prior knowledge.

Causal discovery with prior knowledge is important for improving performance. We consider the incorporation of marginal causal relations, which correspond to the presence or absence of directed paths in a causal model. We propose the Marginal Prior Causal Knowledge PC (MPPC) algorithm to incorporate marginal causal relations into a constraint-based structure learning algorithm. We provide the theorems of conditional independence properties by combining observational data and marginal causal relations. We compare the MPPC algorithm with other structure learning methods in both simulation studies and real-world networks. The results indicate that, compare with other constraint-based structure learning methods, MPPC algorithm can incorporate marginal causal relations and is more effective and more efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信