利用机器学习为低级别胶质瘤患者量身定制放疗和化疗。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0306711
Enzhao Zhu, Jiayi Wang, Weizhong Shi, Zhihao Chen, Min Zhu, Ziqin Xu, Linlin Li, Dan Shan
{"title":"利用机器学习为低级别胶质瘤患者量身定制放疗和化疗。","authors":"Enzhao Zhu, Jiayi Wang, Weizhong Shi, Zhihao Chen, Min Zhu, Ziqin Xu, Linlin Li, Dan Shan","doi":"10.1371/journal.pone.0306711","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could help tailor treatments to each patient's needs.</p><p><strong>Objective: </strong>We sought to discern the individual suitability of radiotherapy (RT) or chemoradiotherapy (CRT) in LGG patients using ML models.</p><p><strong>Methods: </strong>Ten ML models, trained to infer ITE in 4,042 LGG patients, were assessed. We compared patients who followed treatment recommendations provided by the models with those who did not. To mitigate the risk of treatment selection bias, we employed inverse probability treatment weighting (IPTW).</p><p><strong>Results: </strong>The Balanced Survival Lasso-Network (BSL) model showed the most significant protective effect among all the models we tested (hazard ratio (HR): 0.52, 95% CI, 0.41-0.64; IPTW-adjusted HR: 0.58, 95% CI, 0.45-0.74; the difference in restricted mean survival time (DRMST): 9.11, 95% CI, 6.19-12.03; IPTW-adjusted DRMST: 9.17, 95% CI, 6.30-11.83). CRT presented a protective effect in the 'recommend for CRT' group (IPTW-adjusted HR: 0.60, 95% CI, 0.39-0.93) yet presented an adverse effect in the 'recommend for RT' group (IPTW-adjusted HR: 1.64, 95% CI, 1.19-2.25). Moreover, the models predict that younger patients and patients with overlapping lesions or tumors crossing the midline are better suited for CRT (HR: 0.62, 95% CI, 0.42-0.91; IPTW-adjusted HR: 0.59, 95% CI, 0.36-0.97).</p><p><strong>Conclusion: </strong>Our findings underscore the potential of the BSL model in guiding the choice of adjuvant treatment for LGGs patients, potentially improving survival time. This study emphasizes the importance of ML in customizing patient care, understanding the nuances of treatment selection, and advancing personalized medicine.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 8","pages":"e0306711"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.\",\"authors\":\"Enzhao Zhu, Jiayi Wang, Weizhong Shi, Zhihao Chen, Min Zhu, Ziqin Xu, Linlin Li, Dan Shan\",\"doi\":\"10.1371/journal.pone.0306711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could help tailor treatments to each patient's needs.</p><p><strong>Objective: </strong>We sought to discern the individual suitability of radiotherapy (RT) or chemoradiotherapy (CRT) in LGG patients using ML models.</p><p><strong>Methods: </strong>Ten ML models, trained to infer ITE in 4,042 LGG patients, were assessed. We compared patients who followed treatment recommendations provided by the models with those who did not. To mitigate the risk of treatment selection bias, we employed inverse probability treatment weighting (IPTW).</p><p><strong>Results: </strong>The Balanced Survival Lasso-Network (BSL) model showed the most significant protective effect among all the models we tested (hazard ratio (HR): 0.52, 95% CI, 0.41-0.64; IPTW-adjusted HR: 0.58, 95% CI, 0.45-0.74; the difference in restricted mean survival time (DRMST): 9.11, 95% CI, 6.19-12.03; IPTW-adjusted DRMST: 9.17, 95% CI, 6.30-11.83). CRT presented a protective effect in the 'recommend for CRT' group (IPTW-adjusted HR: 0.60, 95% CI, 0.39-0.93) yet presented an adverse effect in the 'recommend for RT' group (IPTW-adjusted HR: 1.64, 95% CI, 1.19-2.25). Moreover, the models predict that younger patients and patients with overlapping lesions or tumors crossing the midline are better suited for CRT (HR: 0.62, 95% CI, 0.42-0.91; IPTW-adjusted HR: 0.59, 95% CI, 0.36-0.97).</p><p><strong>Conclusion: </strong>Our findings underscore the potential of the BSL model in guiding the choice of adjuvant treatment for LGGs patients, potentially improving survival time. This study emphasizes the importance of ML in customizing patient care, understanding the nuances of treatment selection, and advancing personalized medicine.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 8\",\"pages\":\"e0306711\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0306711\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0306711","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:低级别胶质瘤(LGG)各种辅助治疗的有效性一直存在不确定性。能够预测个体治疗效果(ITE)并提供治疗建议的机器学习(ML)模型有助于根据每位患者的需求量身定制治疗方案:我们试图利用 ML 模型来辨别 LGG 患者接受放疗 (RT) 或化疗 (CRT) 的个体适宜性:我们评估了 10 个 ML 模型,这些模型经过训练可推断出 4,042 名 LGG 患者的 ITE。我们将遵循模型提供的治疗建议的患者与未遵循建议的患者进行了比较。为了降低治疗选择偏倚的风险,我们采用了反概率治疗加权法(IPTW):结果:在我们测试的所有模型中,平衡生存套索网络(BSL)模型显示出最显著的保护效果(危险比(HR):0.52,95% CI,0.41-0.64;IPTW调整后的HR:0.58,95% CI,0.45-0.74;受限平均生存时间(DRMST)的差异:9.11,95% CI,6.5):9.11,95% CI,6.19-12.03;IPTW 调整后的 DRMST:9.17,95% CI,6.30-11.83)。CRT对 "建议进行CRT "组具有保护作用(IPTW调整后的HR:0.60,95% CI,0.39-0.93),但对 "建议进行RT "组具有不利作用(IPTW调整后的HR:1.64,95% CI,1.19-2.25)。此外,模型预测年轻患者和病灶重叠或肿瘤越过中线的患者更适合接受CRT治疗(HR:0.62,95% CI,0.42-0.91;IPTW调整后的HR:0.59,95% CI,0.36-0.97):我们的研究结果凸显了 BSL 模型在指导 LGG 患者选择辅助治疗方面的潜力,有可能改善患者的生存时间。这项研究强调了ML在定制患者护理、了解治疗选择的细微差别以及推进个性化医疗方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.

Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.

Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.

Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients.

Background: There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could help tailor treatments to each patient's needs.

Objective: We sought to discern the individual suitability of radiotherapy (RT) or chemoradiotherapy (CRT) in LGG patients using ML models.

Methods: Ten ML models, trained to infer ITE in 4,042 LGG patients, were assessed. We compared patients who followed treatment recommendations provided by the models with those who did not. To mitigate the risk of treatment selection bias, we employed inverse probability treatment weighting (IPTW).

Results: The Balanced Survival Lasso-Network (BSL) model showed the most significant protective effect among all the models we tested (hazard ratio (HR): 0.52, 95% CI, 0.41-0.64; IPTW-adjusted HR: 0.58, 95% CI, 0.45-0.74; the difference in restricted mean survival time (DRMST): 9.11, 95% CI, 6.19-12.03; IPTW-adjusted DRMST: 9.17, 95% CI, 6.30-11.83). CRT presented a protective effect in the 'recommend for CRT' group (IPTW-adjusted HR: 0.60, 95% CI, 0.39-0.93) yet presented an adverse effect in the 'recommend for RT' group (IPTW-adjusted HR: 1.64, 95% CI, 1.19-2.25). Moreover, the models predict that younger patients and patients with overlapping lesions or tumors crossing the midline are better suited for CRT (HR: 0.62, 95% CI, 0.42-0.91; IPTW-adjusted HR: 0.59, 95% CI, 0.36-0.97).

Conclusion: Our findings underscore the potential of the BSL model in guiding the choice of adjuvant treatment for LGGs patients, potentially improving survival time. This study emphasizes the importance of ML in customizing patient care, understanding the nuances of treatment selection, and advancing personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信