Ramy Ayoub, Sabrina Yang, Helen Ji, Lloyd Fan, Steven De Michino, Donald J Mabbott, Brian J Nieman
{"title":"颅内辐射和 CSF1R 抑制剂治疗幼鼠模型的脑容量和小胶质细胞密度变化具有相关性。","authors":"Ramy Ayoub, Sabrina Yang, Helen Ji, Lloyd Fan, Steven De Michino, Donald J Mabbott, Brian J Nieman","doi":"10.1002/nbm.5222","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5222"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment.\",\"authors\":\"Ramy Ayoub, Sabrina Yang, Helen Ji, Lloyd Fan, Steven De Michino, Donald J Mabbott, Brian J Nieman\",\"doi\":\"10.1002/nbm.5222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5222\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment.
Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.