Savannah Harvey, Donisha S N K Liyanagamage, Tapasya Pal, Anica Klockars, Allen S Levine, Pawel K Olszewski
{"title":"Cntnap2-/-自闭症小鼠模型中美味溶液的过度摄入:与催产素有关。","authors":"Savannah Harvey, Donisha S N K Liyanagamage, Tapasya Pal, Anica Klockars, Allen S Levine, Pawel K Olszewski","doi":"10.1097/WNR.0000000000002089","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulated appetite is common in autism spectrum disorder (ASD) and it includes excessive interest in tasty foods. Overconsumption of palatable fluids has been found in the valproic acid-induced ASD rat. Though ASD has a strong genetic component, the link between ASD-related genes and appetite for palatable foods remains elusive. We focused on the CNTNAP2 gene whose deletion in mice recapitulates human ASD symptoms. We investigated whether Cntnap2-/- male mice consume greater amounts of palatable 10% sucrose, 0.1% saccharin, and 4.1% intralipid solutions offered in episodic meals either in a no-choice paradigm or a two-bottle choice test. We examined how sucrose intake affects c-Fos immunoreactivity in feeding-related brain areas. Finally, we determined doses at which intraperitoneal oxytocin decreases sucrose intake in mutants. In the single-bottle tests, Cntnap2-/- mice drank more sucrose, saccharin, and intralipid compared to WTs. Given a choice between two tastants, Cntnap2-/- mice had a higher preference for sucrose than intralipid. While the standard 1 mg/kg oxytocin dose reduced sucrose intake in WTs, a low oxytocin dose (0.1 mg/kg) decreased sucrose intake in Cntnap2-/- mice. Sucrose intake induced a more robust c-Fos response in wild-type (WT) than Cntnap2-/- mice in the reward and hypothalamic sites and it increased the percentage of Fos-immunoreactivity oxytocin neurons in WTs, but not in mutants. We conclude that Cntnap2-/- mice overconsume palatable solutions, especially sucrose, beyond levels seen in WTs. This excessive consumption is associated with blunted c-Fos immunoreactivity in feeding-related brain sites, and it can be reversed by low-dose oxytocin.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"980-986"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palatable solution overconsumption in the Cntnap2-/- murine model of autism: a link with oxytocin.\",\"authors\":\"Savannah Harvey, Donisha S N K Liyanagamage, Tapasya Pal, Anica Klockars, Allen S Levine, Pawel K Olszewski\",\"doi\":\"10.1097/WNR.0000000000002089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulated appetite is common in autism spectrum disorder (ASD) and it includes excessive interest in tasty foods. Overconsumption of palatable fluids has been found in the valproic acid-induced ASD rat. Though ASD has a strong genetic component, the link between ASD-related genes and appetite for palatable foods remains elusive. We focused on the CNTNAP2 gene whose deletion in mice recapitulates human ASD symptoms. We investigated whether Cntnap2-/- male mice consume greater amounts of palatable 10% sucrose, 0.1% saccharin, and 4.1% intralipid solutions offered in episodic meals either in a no-choice paradigm or a two-bottle choice test. We examined how sucrose intake affects c-Fos immunoreactivity in feeding-related brain areas. Finally, we determined doses at which intraperitoneal oxytocin decreases sucrose intake in mutants. In the single-bottle tests, Cntnap2-/- mice drank more sucrose, saccharin, and intralipid compared to WTs. Given a choice between two tastants, Cntnap2-/- mice had a higher preference for sucrose than intralipid. While the standard 1 mg/kg oxytocin dose reduced sucrose intake in WTs, a low oxytocin dose (0.1 mg/kg) decreased sucrose intake in Cntnap2-/- mice. Sucrose intake induced a more robust c-Fos response in wild-type (WT) than Cntnap2-/- mice in the reward and hypothalamic sites and it increased the percentage of Fos-immunoreactivity oxytocin neurons in WTs, but not in mutants. We conclude that Cntnap2-/- mice overconsume palatable solutions, especially sucrose, beyond levels seen in WTs. This excessive consumption is associated with blunted c-Fos immunoreactivity in feeding-related brain sites, and it can be reversed by low-dose oxytocin.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\" \",\"pages\":\"980-986\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002089\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Palatable solution overconsumption in the Cntnap2-/- murine model of autism: a link with oxytocin.
Dysregulated appetite is common in autism spectrum disorder (ASD) and it includes excessive interest in tasty foods. Overconsumption of palatable fluids has been found in the valproic acid-induced ASD rat. Though ASD has a strong genetic component, the link between ASD-related genes and appetite for palatable foods remains elusive. We focused on the CNTNAP2 gene whose deletion in mice recapitulates human ASD symptoms. We investigated whether Cntnap2-/- male mice consume greater amounts of palatable 10% sucrose, 0.1% saccharin, and 4.1% intralipid solutions offered in episodic meals either in a no-choice paradigm or a two-bottle choice test. We examined how sucrose intake affects c-Fos immunoreactivity in feeding-related brain areas. Finally, we determined doses at which intraperitoneal oxytocin decreases sucrose intake in mutants. In the single-bottle tests, Cntnap2-/- mice drank more sucrose, saccharin, and intralipid compared to WTs. Given a choice between two tastants, Cntnap2-/- mice had a higher preference for sucrose than intralipid. While the standard 1 mg/kg oxytocin dose reduced sucrose intake in WTs, a low oxytocin dose (0.1 mg/kg) decreased sucrose intake in Cntnap2-/- mice. Sucrose intake induced a more robust c-Fos response in wild-type (WT) than Cntnap2-/- mice in the reward and hypothalamic sites and it increased the percentage of Fos-immunoreactivity oxytocin neurons in WTs, but not in mutants. We conclude that Cntnap2-/- mice overconsume palatable solutions, especially sucrose, beyond levels seen in WTs. This excessive consumption is associated with blunted c-Fos immunoreactivity in feeding-related brain sites, and it can be reversed by low-dose oxytocin.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.