{"title":"爬行动物嗅球中的谷氨酸脱羧酶免疫反应。","authors":"Michael B Pritz","doi":"10.1097/WNR.0000000000002082","DOIUrl":null,"url":null,"abstract":"<p><p>The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glutamic acid decarboxylase immunoreactivity in the olfactory bulb of a reptile.\",\"authors\":\"Michael B Pritz\",\"doi\":\"10.1097/WNR.0000000000002082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002082\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Glutamic acid decarboxylase immunoreactivity in the olfactory bulb of a reptile.
The objective is to determine the distribution of glutamic acid decarboxylase (GAD) in the olfactory bulb of a crocodilian, Caiman crocodilus . Avidin-biotin immunohistochemical methodology using a polyclonal antibody to GAD raised in sheep was employed. The following controls were used: substitution of the primary antibody with preimmune sheep serum at concentrations equal to that of the primary antibody; omission of the primary antibody; and omission of the primary antibody and biotinylated rabbit antisheep immunoglobulin. No GAD (+) cells were observed in the control sections. Based on cell and fiber staining, the layering and neuronal organization of the olfactory bulb in Caiman were similar to other vertebrates, including other reptiles. The following elements were GAD (+): granule cells, certain neurons in the outer plexiform layer, periglomerular neurons, and the glomeruli themselves. GAD (+) puncta were present throughout the olfactory bulb. In conclusion, these results in Caiman were similar, in part, to comparable studies in mammals and birds. Taken together, these data indicate that crocodiles not only have a similar pattern of layers that other amniotes possess but also that the immunocytochemical signatures of certain elements of the olfactory bulb are likewise shared.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.